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Annotation

Greedy function approximation and boosting algorithms are well

suited for solving practical machine learning tasks. We will describe

well-known boosting algorithms and their modi�cations used for

solving learning to rank problems.
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Search engine ranking

Main goal: to rank documents according to their quality of

conformance to the search query.

How to evaluate ranking?
Prerequisites:

� Set of search queries Q = {q1, .., qn}.
� Set of documents corresponding to each query q ∈ Q .

q → {d1, d2, ...}

� Relevance judgments for each pair (query, document)
(In our model real numbers rel(q, d) ∈ [0, 1])



Evaluation measures

Evaluation mark for ranking will be an average value of evaluation
measure over the set of search queries Q:∑

q∈Q
EvMeas(ranking for query q)

n

Example of evaluation measure EvMeas:

� Precision-10 - percent of documents with relevance

judgments greater than 0 in top-10
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Evaluation measures

� MAP - mean average precision

MAP (ranking for query q) =
1
k

k∑
i=1

i

nr(i)

k - number of documents with positive relevance judgments

corresponding to query q, nr(i) - position of the i-th
document with relevance judgment greater than 0.



Evaluation measures

� DCG - discounted cumulative gain

DCG(ranking for query q) =
Nq∑
j=1

relj
log2j + 1

Nq - total number of documents in ranked list, relj - relevance
judgment for document on position j.

� normalized DCG(nDCG)

nDCG(...) =
DCG(ranking for query q)

DCG(ideal ranking for query q)



Feature based ranking model

� Each pair (query, document) is described by the vector of

features.

(q, d)→ (f1(q, d), f2(q, d), ..)

� Search ranking is the sorting by the value of "relevance
function". Relevance function is a combination of features:

fr(q, d) = 3.14 · log7(f9(q, d)) + ef66(q,d) + ...
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Optimization problems

How to get a good relevance function?

Get learning set of examples Pl - set of pairs (q, d) with relevance

judgments rel(q, d).

Use learning to rank methods to obtain fr.



Optimization problems (listwise approach)

� Solve direct optimization problem:

arg max
fr∈F

=

∑
q∈Ql

EvMeas(ranking for query q with fr)

n

F - set of possible ranking functions. Ql - set of di�erent
queries in learning set Pl

Di�culty in solving: most of evaluation measures are

non-continuous functions.



Optimization problems (pointwise approach)

� Simplify optimization task to regression problem and minimize

sum of loss functions:

arg min
fr∈F

Lt(fr) =

∑
(q,d)∈Pl

L(fr(q, d), rel(q, d))

n

L(fr(q, d), rel(q, d)) - loss function, F - set of possible

ranking functions. Examples of loss functions:

� L(fr, rel) = (fr − rel)2

� L(fr, rel) = |fr − rel|



Optimization problem (pairwise approach)

� Try to use well-known machine learning algorithms to solve the

following classi�cation problem:

� an ordered pair of documents (d1, d2)(corresponding to query
q) belongs to �rst class i� rel(q, d1) > rel(q, d2)

� an ordered pair of documents (d1, d2)(corresponding to query
q) belongs to second class i� rel(q, d1) ≤ rel(q, d2)



Boosting algorithms and greedy function approximation

We will solve regression problem:

arg min
fr∈F

∑
(q,d)∈Pl

L(fr(q, d), rel(q, d))

n

We will search relevance function in the following form:

fr(q, d) =
M∑
k=1

αkhk(q, d)

Relevance function will be a linear combination of functions hk(q, d),
functions hk(q, d) belong to simple family H (weak learners family) .
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Boosting algorithms and greedy function approximation

We will construct �nal function by iterations. On each iteration we

will add an additional term αkhk(q, d) to our relevance function:

frk(q, d) = frk−1(q, d) + αkhk(q, d)

Values of parameter αk and weak learner hk(q, d) can be a solution

of natural optimization task:

arg min
α,h(q,d)

∑
(q,d)∈Pl

L(frk−1(q, d) + αh(q, d), rel(q, d))

n

This problem can be solved directly for quadratic loss function and

simple classes H, but it can be very di�cult to solve for other loss

functions.
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Boosting algorithms and greedy function approximation

We will construct additional term αkhk(q, d) in three steps :

� Gradient approximation. Consider relevance function fr like
vector of values indexed by learning examples. Get gradient

vector g = {g(q,d)}(q,d)∈Pl
for error function :

g(q,d) =
[
∂Lt(fr)
∂fr(q, d)

]
fr=frk−1

� Weak learner selection(up to a constant). Find most highly

correlated with g function hk(q, d) by solving the following

optimization task:

arg min
β,h(q,d)∈H

∑
(q,d)∈Pl

(g(q,d) − βh(q, d))2
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Boosting algorithms and greedy function approximation

� Selection of αk. Find the value of αk from one-parameter

optimization problem:

arg min
α

∑
(q,d)∈Pl

L(frk−1(q, d) + αhk(q, d), rel(q, d))

n

Iterate... Iterate... Iterate...



Weak learner selection

Let our class of weak learners H will be a set of decision-tree

functions:

f3(q, d) > 0.5
Z
Z
Z~

�
�

�=
Yes No

res = β1 f65(q, d) > 0.78
Z
Z
Z~

�
�
�=
Yes No

res = β2 res = β3

Example of 3-region decision-tree function. The function splits

feature space on 3 regions by conditions in the form fj(q, d) > α
(fj - split feature, α - split bound). It has a constant value for

feature vectors in one region.



Weak learner selection (function values)

Our weak learners family will be 6-region(example, const-regions)

decision-tree functions. We will try to solve:

arg min
h(q,d)∈H

∑
(q,d)∈Pl

(g(q,d) − βh(q, d))2

Suppose we know tree-structure of weak learner h(q, d) - we know
split conditions and regions. We should �nd "region constant

values". Optimization problem reduces to ordinary regression

problem:

arg min
h(q,d)∈H,β

∑
(q,d)∈Pl

(g(q,d) − ββind(q,d))2

ind(q, d) - number of region, which contains features vector for

pair (q, d) (ind(q, d) ∈ {1, .., 6}).



Weak learner selection (function values)

Our weak learners family will be 6-region(example, const-regions)

decision-tree functions. We will try to solve:

arg min
h(q,d)∈H

∑
(q,d)∈Pl

(g(q,d) − βh(q, d))2

Suppose we know tree-structure of weak learner h(q, d) - we know
split conditions and regions. We should �nd "region constant

values". Optimization problem reduces to ordinary regression

problem:

arg min
h(q,d)∈H,β

∑
(q,d)∈Pl

(g(q,d) − ββind(q,d))2

ind(q, d) - number of region, which contains features vector for

pair (q, d) (ind(q, d) ∈ {1, .., 6}).



Weak learner selection (tree structure)

Greedy tree selection:

� bestTree = constant function (1-region tree).

� Greedy split. Try to split regions of bestTree and �nd the

best split.
f3(q, d) > 0.5

Z
Z
Z~

�
�

�=
Yes No

f?(q, d) >? f?(q, d) >?
Z�Z�

?

Suppose we have constant set of possible split bounds.

Number of possible splits is bounded by the value:

#{regions} ·#{features} ·#{split bounds}

� Repeat previous step.
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MatrixNet

Weak learners set- full decision trees with depth k and 2k regions.

� Constant number of layers (constant depth).

� The same split conditions for one layer.

f3(q, d) > 0.5
Z
Z
Z~

�
�

�=
Yes No

f56(q, d) > 0.34 f56(q, d) > 0.34
Z
Z
Z~

�
�
�=

Z
Z
Z~

�
�

�=
Yes NoYes No

β1 β2 β3 β4

We don't need complex structure: depth is the main thing.



MatrixNet



Approximation of complex evaluation measures (DCG)

Change ranking to "probability ranking". Approximation of

DCG for query q, set of documents {d1, .., dn}, and ranking

function fr(q, d):

apxDCG =
∑

r∈all permutations of docs
P (fr, r)DCG(r)

P (fr, r) - probability to get ranking r in Luce-Plackett model.

DCG(r) - DCG score for permuation r.



Luce-Plackett model

We have set of documents {d1, .., dn} and set of relevances

{fr(q, d1), .., fr(q, dn)} corresponding them.

Process of ranking selection in Luce-Plackett model:

� Select document for �rst position. Probability of selection of

document di is equal to
fr(q,di)

n∑
i=1

fr(q,di)
. Suppose we select

document dx.

� Select document for second position from the rest. Probability

of selection of document di is equal to
fr(q,di)

n∑
i=1

fr(q,di)−fr(q,dx)

� ...

For each selection, if two documents di and dj take part in it, ratio

between their selection probabilities should be equeal to the value
fr(q,di)
fr(q,dj)



Luce-Plackett model

{d́1, .., d́n} - some permutation of {d1, .., dn}

P (fr, {d́1, .., d́n}) =
n∏
j=1

fr(q, d́j)
n∑
k=j

fr(q, d́k)



The end. Thank you.
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