How to build Google

IN 90 minutes
(or any other large web search engine)

Djoerd Hiemstra
University of Twente
http://www.cs.utwente.nl/~hiemstra



Ingredients of this talk:

1. A bit of high school mathematics

2. Zipf's law

3. Indexing, query processing
Shake well...




Course objectives

Get an understanding of the scale of
“things”

Being able to estimate index size and query
time

Applying simple index compressions
schemes

Applying simple optimizations



New web scale search engine

* How much money
do we need for our
startup?




Dear bank,

* We put the entire web index on a desktop
PC and search it in reasonable time:

a) probably

b) maybe

C) no

d) no, are you crazy?




Google!

Seagch the web using Goagle

Google Saarch I'm faaling lucky '

More Google!

Copunghe B1999 Google Ine.



(Brin & Page 1998)



Google’s 10t birthday

Gzogle



Architecture today

Query
1. The web server sends the query

N to the index servers. The content
inside the index servers is similar to
the index in the back of a book - it
tells which pages contain the words
hat match the query.

3. The search
results are
returned to the
user in a fraction  Geogle User
of a second.

Google Web Server

——

Index Servers

2. The query travels to the doc
servers, which actually retrieve
the stored documents. Snippets

are generated to describe each  poc servers
search result. = 0 (')8 e




Google’s 10" birthday

» Google maintains the worlds largest
cluster of commodity hardware (over
100,000 servers)

* These are partitioned between index
servers and page servers (and more)

— Index servers resolve the queries (massively
parallel processing)

— Page servers deliver the results of the
qgueries: urls, title, snippets
« Over 20(?) billion web pages are indexed
and served by Google



Google '98: Zlib compression

» A variant of LZ77 (gzip)

Repository: 53.5 GB = 147.8 GB uncompressed

sync| length]| compressed packet
sync| length| compressed packet

F;écket (stored compressed in repository)
docial ecode| urllen| pagelen| url page




Google '98: Forward & Inverted Index

Hit: 2 bytes
plain:|cap:1 Imp:3 position: 12
fancy:[cap:1 | Imp =7 [type: 4 position: &8
anchor:[cap:1 | Imp =7 |[type: 4 |hash:4 |pos: 4
Forward Barrels: total 43 GB
| docid] wordid: 24| nhits: 8] hit hit hit hit
wordid: 24| nhits: 8| hit hit hit hit
hull wordid
| docid| wordid: 24] nhits: 8] hit hit hit hit
wordid: 24| nhits: 8] hit hit hit hit
wordid: 24| nhits: 8] hit hit hit hit
null wordid

Lexicon: 292MB

Inverted Barrels: 41 GB

» wordid] ndocs - docid: 271 nhits:5] hit hit hit hit]
: wordid| ndocs| - docid: 27| nhits:5] hit hit hit|
“wordid| ndocs| <| ™ docid: 27 nhits:5[_hit hit hit hit]
""""" hhits:5] hit hit]

\ docid: 27



W=

o o

Google '98: Query evaluation

Parse the query.
Convert words into wordIDs.

Seek to the start of the doclist in the short barrel for
every word.

Scan through the doclists until there is a document that
matches all the search terms.

Compute the rank of that document for the query.

If we are in the short barrels and at the end of any
doclist, seek to the start of the doclist in the full barrel
for every word and go to step 4.

If we are not at the end of any doclist go to step 4.
Sort the documents that have matched by rank and
return the top k.



Google'98: Storage numbers

Total Size of Fetched Pages 147.8 GB
Compressed Repository 53.5 GB
Short Inverted Index 4.1 GB
Full Inverted Index 37.2GB
Lexicon 293 MB
Terr(lrf);r?nryzo,i\glc):hor Data 6.6 GB
e bt
Links Database 3.9 GB
Total Without Repository 55.2 GB

Total With Repository 108.7 GB




Google'98: Page search

Web Page Statistics

Number of Web Pages Fetched 24 million
Number of URLs Seen 76.5 million
Number of Email Addresses 1.7 million

Number of 404's 1.6 million




Google'98: Search speed

Same Query Repeated (10

Initial Query mostly cached)
Query CPUTime(s) | Total Time(s) | CPU Time(s) Total Time(s)
al gore 0.09 2.13 0.06 0.06
vice 1.77 3.84 1.66 1.80
president
hard 0.25 4.86 0.20 0.24
disks
search 1.31 9.63 1.16 1.16

engines




How many pages? (November 2004)

Search Engine Reported Size

Google 8.1 billion
Microsoft 5.0 billion
Yahoo 4.2 billion
Ask 2.5 billion

http://blog.searchenginewatch.com/blog/041111-084221



How many pages?

Collection
Bible GNUbib Comact TREC
Documents N 31,102 64,267 261,829 742,358
Number of terms F | 884,988 | 2,570,939 | 22,805,920 | 333,856,749
‘Distinct terms n 9,020 47,064 37,146 538,244
Index pointers f | 699,131 | 2,228,135 | 13,095,224 | 136,010,026
Total size (Mbyte) 4,33 14.05 131.86 2054.52

Table 3.1 Parameters of document collections,

(Witten, Moffat, Bell, 1999)



Queries per day? (December 2007)

Service Searches per day
Google 180 million
Yahoo 70 million
Microsoft 30 million
Ask 13 million

http://searchenginewatch.com/reports/



Popularity (in the US)

Yahoo, 22.5%

M5SN, 12.6%0

®—AOL, 5.4%
Vo Ask, 1.6%
Dogpile, 0.9% My Way, 2.2%
EarthLink, 0.8% Netscape, 1.6%
iWon, 0.9%

Others, 5.3%

http://searchenginewatch.com/reports/



Searching the web

 How much data are we talking about?
— About 10 billion pages

— Assume a page contains 200 terms on
average

— Each term consists of 5 characters on average

— To store the web you need to search:
« 109 x 200x5 ~=10TB



Some more stuff to store?

» Text statistics:
— Term frequency
— Collection frequency
— Inverse document frequency ...

« Hypertext statistics:
— Ingoing and outgoing links
— Anchor text

— Term positions, proximities, sizes, and
characteristics ...



How fast can we search 10 TB?

* We need to find a large hard disk
—Size:1.5TB
— Hard disk transfer time 100 MB/s

* Time needed to sequentially scan the

— 100,000 seconds ...

— ... S0, we have to wait for 28 hours to get the
answer to one (1) query

« We can definitely do better than that!



Problems in web search

« Web crawling

— politeness, freshness, duplicates, missing links, loops,
server problems, virtual hosts, etc.

« Maintain large cluster of servers

— Page servers: store and deliver the results of the
qgueries

— Index servers: resolve the queries
* Answer 100 million of user queries per day
— Caching, replicating, parallel processing, etc.
— Indexing, compression, coding, fast access, etc.



Implementation issues

* Analyze the collection
— Avoid non-informative data for indexing
— Decision on relevant statistics and info
* Index the collection
— How to organize the index?
« Compress the data

— Data compression
— Index compression



Ingredients of this talk:

. A bit of high school mathematics
. Zipf's law

. Indexing, query processing
Shake well...



Zipf's law

« Count how many times a
term occurs In the collection

—call this f

* Order them in descending order
—call the rank r

« Zipf's claim:

— For each word, the product of frequency and
rank is approximatel constant: fx r=c




Zipf distribution

Term 300

count 550

200

130

100

501

0 50 100 150 200 250 300
Terms by rank order

Linear scale



Zipf distribution

Term 1000;
count

100

10

1 10 100 1000
Terms by rank order

Logarithmic scale



Consequences

* Few terms occur very frequently: a, an,
the, ... => non-informative (stop) words

« Many terms occur very infrequently:
spelling mistakes, foreign names, ...

 Medium number of terms occur with
medium frequency



Frequenc v of wornds

Word resolving power

Upper
cut-off

% {
.%

4

Lower
cut-off

Resolying power of

_ — Fignificant words
- - //
s S

plgnificant words

/_};_ﬂ-d

YWornds by rank onder

SRR L7 S RN e SRl CER R IR B T B0 BT BT B SR TTER I R T, e e

N il ped e Sebefte Mg FE0)

(Van Rijsbergen 79)



Heap's law for dictionary size

number of
unique
terms

10000

BO00

000

4000

2000

200000

400000

00000

S00000

1e+08

collection size


http://en.wikipedia.org/wiki/Image:Heaps_law_plot.png

Ingredients of this talk:

1. A bit of high school mathematics
2. Zipf's law
1. Indexing

Shake well...



Example

Document number | Text

1 Pease porridge hot, pease porridge cold

Pease porridge in the pot

Nine days old

Some like it hot, some like it cold

Some like it in the pot

[©) 20 B 6 I I > N B OO N B \O)

Nine days old

Stop words: in, the, it.

(Witten, Moffat & Bell, 1999)



Inverted index

cold 2

days 4

hot 6

like 8

nine 10

old 12

pease 14 II 2
porridge | 16 /1, 2

dictionary postings



Size of the inverted index



Size of the inverted index

* Number of postings (term-document pairs):
— Number of documents: ~1019,

— Average number of unique terms per document
(document size ~200): ~100

— 5 bytes for each posting (why?)
— S0,10"x100x5=5TB
— postings take half the size of the data



Size of the inverted index

 Number of unique terms is, say, 108

— 6 bytes on average

— plus off-set in postings, another 8 bytes

— S0,108x 14 =1.4GB

— So, dictionary is tiny compared to postings (0.03 %)
« Another optimization (Galago):

— sort dictionary alphabetically

— at maximum one vocabulary entry for each 32 KB
block



Inverted index encoding

* The inverted file entries are usually stored
In order of increasing document number

— [<retrieval; 7; [2, 23, 81,98, 121, 126, 180]>

(the term “retrieval” occurs in 7 documents with
document identifiers 2, 23, 81, 98, etc.)



Query processing (1)

« Each inverted file entry is an ascending
ordered sequence of integers

— allows merging (joining) of two lists in a time
linear in the size of the lists



Query processing (2)

« Usually queries are assumed to be
conjunctive queries

— query: information retrieval

— IS processed as information AND retrieval

[<retrieval; 7; [2, 23, 81, 98, 121, 126, 139]>
[<information; 9; [1, 14, 23, 45, 46, 84,98, 111, 120]>

— Intersection of posting lists gives:
[23, 98]




Query processing (3)

 Remember the Boolean model?

— Intersection, union and complement is done
on posting lists

— s0, Information OR retrieval
[<retrieval;, 7; [2, 23, 81, 98, 121, 126, 139]>
[<information; 9; [1, 14, 23, 45, 46, 84,98, 111, 120]>

— union of posting lists gives:
[1,2,14, 23,45, 46, 81, 84,98, 111,120, 121, 126, 139]



Query processing (4)
« Estimate of selectivity of terms:

— Suppose information occurs on 1 billion pages
— Suppose retrieval occurs on 10 million pages

?



Query processing (4)

« Estimate of selectivity of terms:
— Suppose information occurs on 1 billion pages
— Suppose retrieval occurs on 10 million pages
* size of postings (5 bytes per docid):
— 1 billion * 5B = 5 GB for information
— 10 million * 5B = 50 MB for retrieval
» Hard disk transfer time:

— 50 sec. for information + 0.5 sec. for retrieval
— (ignore CPU time and disk latency)



Query processing (5)

* We just brought query processing down
from 28 hours to just 50.5 seconds (!)

-)

« Still... way too slow...

-~



Inverted file compression (1)

» Trick 1, store sequence of doc-ids:
— [<retrieval; 7; [2, 23, 81, 98, 121, 126, 180]>

as a sequence of gaps
— [<retrieval; 7; [2,21,58,17, 23, 5, 54]>

 No information is lost.

« Always process posting lists from the beginning,
so easily decoded into the original sequence



Inverted file compression (2)

* Does it help?

— maximum gap determined by the number of
indexed web pages...

— Infrequent terms coded as a few large gaps
— frequent terms coded by many small gaps

 Trick 2: use variable byte length encoding.




Variable byte encoding (1)

Gap x

Coding Method

Unary Yy o Golomb

| b=3 b=6
1 0 0 0 100 000
2 10 100 1000 010 001
3 | 110 10t 1001 011 0100
4 1110 11000 10100 100 0101
5 11110 11001 10101 | 1010 | 0110
6 111110 11010 10110 1011 | 0111
7 1111110 11011 | 10111 1100 | 1000
8 11111110 | 1110000 | 11000000 | 11010 | 1001
9 | 111111110 | 1110001 | 11000001 | 11011 { 10100
10 1111111110 | 1110010 | 11000010 | 11100 | 10101

Table3.5 Example codes for integers.

(Witten, Moffat & Bell, 1999)




Variable byte encoding (2)

e v code: represent number x as:

— first bits as the unary code for 1-|-[210g x‘
— remainder bits as binary code for x—2l e

— unary part (minus 1) specifies how many bits are
required to code the remainder part

* For example x =5: :
frstoits: 110 (1+7logs|=1+[2.32/=3)

— remainder: 01 (5_2l 10g5J=5_22=1)



Index sizes

Method . - Bits per pointer ,
Bible | GNUbib | Comact | TREC
Global methods ‘
Unary 264 920 | 490 | 1719 ||.
Binary 15.00.{ 16.00 | 18.00 | 20.00
Bernoulli - 9.67 11.65 10.58 | 12.61
0 6.55 569 | 4.48 643
8 626 | 508 | 436 | 6.19 |
Observed frequency | 592 | 4.83 | 421 5.83
Local methods o N .
Bernoulli 613 | 617 | 540 | 573 ||
Hyperbolic 577 5.17 465 | 574
Skewed Bernoulli | 5.68 4.71 424 5.28
Batched frequency 5.61 465 | 4.03 527

Table 3.7 C@mpréssion of inverted ifiles, in bits per pointer.

(Witten, Moffat & Bell, 1999)




Index size of our search engine



Index size of our search engine

* Number of postings (term-document
pairs):
— 10 billion documents
— 100 unique terms on average
— Assume on average 6 bits per doc-id
— 10" x 100 x 6 bits ~= 750 GB
— about 15% of the uncompressed inverted file.

* [t nicely fits our 1 TB hard drive :-)



Query processing on
compressed index

* size of postings (6 bits per docid):
— 1 billion * 6 bits = 750 Mb for "information"
— 10 million * 6 bits = 7.5 Mb for "retrieval”

 Hard disk transfer time:

— 7.5 sec. for information + 0.08 sec. for
retrieval

— (ignore CPU time and disk latency)



Query processing — Continued (1)

* We already brought down query processing
from more than 1 day to 50.5 seconds...

« and brought that down to 7.58 seconds

-)

e but that is still too slow...

¥



INTERMEZZO

Google PageRank
(Brin & Page 1998)

« Suppose a million monkeys browse the
www by randomly following links

« At any time, what percentage of the
monkeys do we expect to look at page D?

« Compute the probability, and use it to rank
the documents that contain all query
terms

)



INTERMEZZO

Google PageRank

» Given a document D, the documents page rank
at step nis:

P (D)=(1-A)P, () P _(IP(D|I))

[ linking to D

e where

P(D|1I): probability that the monkey reaches page D
through page /(= 1/ #outlinks of /)
A probability that the follows a link

1-A: probability that the monkey types a url .



Early termination (1)

« Suppose we re-sort the document ids for each
posting such that the best documents come first

— e.g., sort document identifiers for "retrieval” by their
tf.idf values.

— [<retrieval; 7: [98, 23, 180, 81, 98, 121, 2, 126,]>

— then: top 10 documents for the query "retrieval” can
be retrieved very quickly: stop after processing the
first 10 document ids from the posting list!

— but compression and merging (multi-word queries) of
postings no longer possible...



Early termination (2)

 Trick 3: define a static (or global) ranking
of all documents
— such as Google PageRank (!)

— re-assign document identifiers by ascending
PageRank

— For every term, documents with a high Page-
Rank are in the initial part of the posting list

— Estimate the selectivity of the query and only
process part of the posting files.

(see e.g. Croft, Metzler & Strohman 2009)



Early termination (3)

« Probability that a document contains a term:
— 1 billion / 10 billion = 0.1 for information
— 10 million / 10 billion = 0.001 for retrieval

« Assume independence between terms:

— 0.1 x0.001 = 0.0001 of the documents contains both
terms

— so0, every 1/0.0001 = 10,000 documents on average
contains information AND retrieval.

— for top 30, process 3,000,000 documents.
— 3,000,000 / 10 billion = 0.0003 of the posting files



Query processing on compressed
iIndex with early termination

» process about 0.0003 of postings:
—0.0003 * 750 Mb = 225 kb for information
—0.0003 * 7.5 Mb = 2.25 kb for retrieval

 Hard disk transfer time:

— 2 msec. for information + 0.02 msec. for
retrieval

— (NB now, ignoring CPU time, disk latency and decom-
pressing time is no longer reasonable, so it is likely

that it takes some more time)



Query processing — Continued (2)

* We just brought query processing down
from 1 day to about 2 ms. !

-)

“This engine is incredibly, amazingly,
ridiculously fast!”

(from “Top Gear”)



Indexing - Recap

* Inverted files
— dictionary & postings
— merging of posting lists
— delta encoding + variable byte encoding
— static ranking + early termination

« Put the entire web index on a desktop PC and
search it in reasonable time:

a) probably



Ingredients of this talk:

1. A bit of high school mathematics
2. Zipf's law
3. Indexing

Shake well...



Summary

* Term distribution and statistics
 Indexing technigues (inverted files)
« Compression, coding, and querying



References

Sergey Brin and Lawrence Page, “The Anatomy of a Large-
Scale Hypertextual Web Search Engine”, Computer Networks
and ISDN Systems, 1998

Bruce Croft, Donald Metzler, and Trevor Strohman, Search
Engines: information retrieval in practice, Pearson, 2009

Keith van Rijsbergen, Information Retrieval, Butterworths,
1979

lan H. Witten, Alistar Moffat, Timothy C. Bell, “Managing

Gigabytes”, Morgan Kaufmann, pages 72-115 (Section 3),
1999



Acknowledgements

» Thanks to the following people for
contributing slides:
— Vojkan Mihajlovic (Philips Research)



	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30
	Dia 31
	Dia 32
	Dia 33
	Dia 34
	Dia 35
	Dia 36
	Dia 37
	Dia 38
	Dia 39
	Dia 40
	Dia 41
	Dia 42
	Dia 43
	Dia 44
	Dia 45
	Dia 46
	Dia 47
	Dia 48
	Dia 49
	Dia 50
	Dia 51
	Dia 52
	Dia 53
	Dia 54
	Dia 55
	Dia 56
	Dia 57
	Dia 58
	Dia 59
	Dia 60
	Dia 61
	Dia 62
	Dia 63
	Dia 64
	Dia 65
	Dia 66

