University of Twente

Information Retrieval Modeling

Russian Summer School in Information Retrieval

Djoerd Hiemstra http://www.cs.utwente.nl/~hiemstra

4 volunteers needed to submit papers

- Each person: Choose a "personal language model" consisting of 3 words
 - For instance: {RuSSIR, Summer, School}
- Write two <u>English</u> papers, both with:
 - Two authors: not both papers the same author, put the author names on the paper,
 - Four words max.: two words from one author, two from the other, don't show who wrote what

Overview

- 1. EM training
- 2. Index compression and query optimization

Course Material

 Djoerd Hiemstra, "Language Models, Smoothing, and N-grams", In M. Tamer Özsu and Ling Liu (eds.)
 Encyclopedia of Database Systems, Springer, 2009

What about relevance feedback?

- We assume that a (one) relevant document has generated the query
- So, once we find that document, we might as well stop.
- What we need is a model of "relevance", or language models of sets of relevant documents

Lavrenko's relevance model

 "Construct a relevance model P(T|R) by assuming that once we pick a relevant document D, the probability of observing a word is independent from the set of relevant documents"

$$P(T|R) = \sum_{D \in R} P(T|D)P(D|R)$$

we only have information about R through a query

$$P(T|q_1,...) = \sum_{D \in R} P(T|D)P(D|q_1,...)$$

Lavrenko's relevance model 1

- Is really a blind feedback method:
 - do an initial run and assign $P(D|q_1,...)$
 - for every retrieved document, get the most frequent terms T, and assign those P(T|D)
 - multiply both probabilities, and sum them for each document retrieved

Balog's expert finder

- As in Lavrenko's method, use query to retrieve some initial documents.
- Instead of query (term) expansion, do person name expansion
 - for every retrieved document, get the candidates ca, and assign those $P(ca \mid D)$
 - multiply both probabilities, and sum them for each document retrieved

(Balog et al. 2006)

Balog's expert finder

 "Construct a candidate model P(calR) by assuming that once we pick a relevant document D, the probability of observing a candidate expert is independent from the set of relevant documents"

$$P(ca|R) = \sum_{D \in R} P(ca|D)P(D|R)$$

we only have information about R through a query

$$\begin{split} P\left(\left.ca\right|q_{1},...\right) &= \sum_{D \in R} P\left(\left.ca\right|D\right) P(\left.D\right|q_{1},...) \\ &\sum_{D \in R} P\left(\left.ca\right|D\right) \prod_{i=1}^{n} \left((1-\lambda) P\left(\left.q_{i}\right|\right) + \lambda P\left(\left.q_{i}\right|D\right)\right) \end{split}$$

Balog's expert finder

	#rel	MAP	R-prec	MRR	P10	
	Model 1 (candidate model):					
BASE	511	0.1253	0.1914	0.2759	0.236	
Model 2 (document model):						
BASE	580	0.1880	0.2332	0.5149	0.316	

Figure 2, Candidate model vs. document model

The relevance model in action

Q = "environmental protection laws" 环境保护法	Q = '	environmental	protection	laws"	环境保护法
---	-------	---------------	------------	-------	-------

P(word Q)	word .	meaning .
0. 061		[punctuation]
0.036	的	[possessive suffix]
0. 027	•	[punctuation]
0.017	和	and
0, 016		[punctuation]
0.009	环境	environment
0.009	了	[end of sentence]
0.008	海洋	Sen
0.008	法	law
0.008	资源	resource
0. 007	全国	whole country
0. 007	在	in
0.006	保护	protect
0.006	污染	pollution
0, 006	胶	rubber
0.006	发泡	defects in plastic
0.005	与	and
0.005	中国	china
0.005	产品	product
0.005	社 維	lew

The relevance model in action

Q = "amazon rain forest"

word	probability	
the	0.0776	
of	0.0386	The see and see an arrange would be
and	0.0251	These are common words: should be explained by ge-
to	0.0244	neral (background) model
in	0.0203	
amazon	0.0114 ←	interesting word!
for	0.0109	interesting word:
:		
assistence	0.0009	These are too specific: might be explained by a
macminn	0.0008	single document model

What we need is parsimony

- Optimize the probability to predict language use
- Minimize the total number of parameters needed for that
- Expectation Maximization Training

(Hiemstra, Robertson & Zaragoza 2004).

Statistical language models

$$P(T_1, T_2, ..., T_n | D) = \prod_{i=1}^{n} ((1-\lambda)P(T_i) + \lambda P(T_i | D))$$

- Presentation as hidden Markov model
 - finite state machine: probabilities governing transitions
 T₁
 T₂
 - sequence of state transitions cannot be determined from sequence of output symbols (i.e. are hidden)

 T_3

Fundamental questions for HMMs

- 1. Given a model, how do we efficiently compute the probability P(O) of the observation sequence O?
- 2. Given the observation sequence *O* and a model how do we choose a state sequence that best explains the observations?
- 3. Given an observation sequence O how do we find the model that maximises the probability P(O) of the observation sequence O?

Fundamental answers

- 1. Forward procedure or backward procedure
- 2. Viterbi algorithm
- 3. Baum Welch algorithm / forwardbackward algorithm (special case of the expectation maximisationalgorithm, or "EM-algorithm")

Statistical language models

- Re-estimate the value of λ_i from relevant documents (relevance feedback)
 - Expectation Maximisation algorithm
 - Estimate different value of λ_i for each term (i.e. different importance of each term.)

Parsimonious models

- Define background models, document models and relevance models in a layered fashion
 - 1. First define background model
 - 2. Higher order model(s) should not model language that is well explained by the background model already
 - 3. Use EM training (we'll see how later on)

Remember this equation?

$$P(T_1, T_2, ..., T_n | D) = \prod_{i=1}^{n} ((1-\lambda)P(T_i) + \lambda P(T_i | D))$$

In the old days:

$$P(T_i) = \frac{\text{nr. of occurrences in collection}}{\text{size of collection}}$$

$$P(T_i|D) = \frac{\text{nr. of occurrences in document}}{\text{size of document}}$$

Parsimonious model estimation

$$P(T_i) = \frac{\text{nr. of occurrences in collection}}{\text{size of collection}}$$

 $P(T_i|D) = \text{some random initialisation}$

Repeat E-step and M-step until P(T|D) does not change significantly anymore

E-step
$$e(T) = tf(T, D) \frac{\lambda P_{old}(T|D)}{(1-\lambda)P(T) + \lambda P_{old}(T|D)}$$

M-step $P_{new}(T|D) = \frac{e(T)}{\sum_{T} e(T)}$

- A two-layered model for documents at index time
 - 1. general model
 - 2. document model

$$P_{index}(T|D) = (1-\lambda)P(T) + \lambda P(T|D)$$
Fix parameter λ
Fix background

Train relevance model

How does it work?

- A two-layered model for queries at search time
 - 1. general model
 - 2. relevance model

- A three-layered model for known relevant documents
 - 1. general model
 - 2. relevance model
 - 3. document model

Train relevance model and document model

$$P_{\mathit{rel}}(T | D) = (1 - \lambda - \mu)P(T) + \mu P(T | R) + \lambda P(T | D)$$

Only use relevance model

Fix parameters

Fix background

How to use a relevance model?

 Measure cross-entropy between relevance model and document model

$$H(R,D) = -\sum_{T} P(T|R) \log((1-\lambda)P(T) + \lambda P(T|D))$$

only terms with non-zero P(T|R) contribute to sum

So, what happens?

How much are we throwing away?

"amazon rain forest" again

 $\lambda = 0.0000001$

word	probability		
amazon	0.3367		
rain	0.3365		
forest	0.2896		
ban	0.0370		
brazil	0.0002		

Serdyukov's expert model

- Use an email archive to search for experts
- Experts both send and receive email on the topic they know well
- Each email is a mixture of the language models of each potential expert
 - i.e. because of in-line quotations

$$P_{rel}(T|D) = \sum_{e \in D} P(T|E=e)P(E=e|D)$$

Train expert models

Fix parameters

Serdyukov's expert model

Fig. 1. Dependence networks for two methods of estimating $P(e, q_1, ..., q_k)$

EM-training for expert search

Method	MAP	MRR	R-prec	P5	P10	P20
Method 1	0.1587	0.6550	0.2598	0.4285	0.4122	0.3341
Method 2	0.1712	0.6712	0.2755	0.4306	0.4304	0.3653

Table 1: Performance of expert ranking methods

(Serdyukov and Hiemstra 2008)
 (table contains results from earlier experiments)

Probabilistic Latent Semantic Indexing

- Each document is a mixture of a number of latent models (or topics)
- We do not know what document discusses what topics

Probabilistic Latent Semantic Indexing

- Related to Singular Value Decomposition
- Problems with over-training (Hofmann 1999)

Approach towards entity ranking

- 1. off-line preparation: index corpus with entity tagging. use NLP techniques to recognize entities if the are not tagged.
- on-line, query dependent: building of an entity containment graph from top ranked retrieved documents
- 3. relevance propagation within the graph and output entities of interest in order of their relevance.

NLP tagging

XML fragment

<entry>Jorge Castillo (artist)Castillo greatly admired
Pablo Picasso, and that influence shows his paintings, etchings,
and lithographs ...

tagged fragment

```
<entry><s><enamex.person>Jorge Castillo</enamex.person>
<O.PUNC>(</O.PUNC> <O.NN>artist</O.NN><O.PUNC>)
</O.PUNC> </s><s><enamex.person>Castillo</enamex.person>
<O.RB>greatly</O.RB> <O.VBD>admired</O.VBD>
<enamex.person>Pablo Picasso</enamex.person><O.PUNC>,
</O.PUNC> <O.CC>and</O.CC><O.DT>that</O.DT>
<O.NN>influence</O.NN> <O.VBZ>shows</O.VBZ><O.IN >in
```

Including Further Entity Types

- We model with entity containment graphs the relationship between entities and documents.
- Documents and Entities are represented as vertices.
- Edges symbolize the containment relation.

Modelling query-dependent scores

Model 1: vertex weights

 Model 2: additional query node and edge weights

Entity identity

- identity check: Is
 Gilot the same
 person as Francois
 Gilot?
- precision: How do we model the occurrence of April 8, 1973 and 1973?

Probabilistic random walk

 The mutually recursive definition describes a walk over the different type of edges in the graph: query—doc, doc—doc, doc—ent, ent—ent.

Probabilistic Random Walk

$$P(e) = \lambda_1 \sum_{d} P(e|d)P(d) + \lambda_2 \sum_{e'} P(e|e')P(e')$$

$$P(d) = \lambda_0 P(d|q) + \lambda_1 \sum_{e} P(d|e)P(e) + \lambda_2 \sum_{d'} P(d|d')P(d')$$

Experimental Results

Performance overview of the relevance propagation models:

Model	unweighted	weighted
MAX		0.352
IDG	0.342	0.371
HITS	0.343	0.376
PRW	0.340	0.386

(Rode et al. 2007)

Advanced models conclusion

- Relevance models: query expansion using initial ranked list
- Expectation Maximization Training: estimate the probability of unseen events
- Random walks: find most central entity/document

References

- Krisztian Balog, Leif Azzopardi, and Maarten de Rijke. Formal models for expert nding in enterprise corpora. Proceedings of SIGIR 2006
- Djoerd Hiemstra, Stephen Robertson and Hugo Zaragoza. Parsimonious Language Models for Information Retrieval", In *Proceedings of SIGIR 2004*
- Thomas Hofmann, Probabilistic latent semantic indexing, Proceedings of SIGIR 1999
- Victor Lavrenko and Bruce Croft. Relevance based language models. Proceedings of SIGIR 2001
- Henning Rode, Pavel Serdyukov, Djoerd Hiemstra, and Hugo Zaragoza, "Entity Ranking on Graphs: Studies on Expert Finding", Technical Report 07-81, CTIT, 2007
- Pavel Serdyukov and Djoerd Hiemstra, Modeling documents as mixtures of persons for expert finding, In Proceedings of ECIR 2008

Acknowledgments

- Some slides were kindly provided by:
 - Pavel Serdyukov
 - Henning Rode