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— Auction Theory and Game Theory
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Course philosophy

Socratic Method (more inspiration than information)

— participation strongly encouraged (please state your name and
affiliation)

Highly interactive and adaptable

— Questions welcome!!

Lectures emphasize intuition, less rigor and detail
— Build on lectures from other faculty
— Background reading will provide more rigor & detail

Action ltems

— Read suggested books first (and then papers), read/write
Wikipedia, watch/make YouTube videos, take courses,
participate in competitions, do internships, network

— Prototype, simulate , publish, participate
— Classic (core) versus trendy (applications)
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Ad Network Architecture: Spot Market

Features \ Behavioral ’ ML
sIndex | ‘<> AB Test
*TF/IDF MLR DashBoard
«(Webgraph) Ranker SI
«Anchor Text
Crawler «——> *Classes Query Proc
-Page Quality Analytics
*Historical t
*Site-level Logs
- Crawl+
| Ratings dex, Feat.) A @
Ad upload/ E— Pllg 1
SeIfS_erve ADashBoard |, | PDashBoard G WebPage“a = _ S
Creatives SERP
Constraints I I / WWW
\IAdvertisers‘ Publishers |‘ May also include

—
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Ad Network Architecture: Spot Market

" DhshBoard

SelfServe ADashBoard | PDashBoard || Generate WebPage'i
Creatives I I AdCode e
Constraints I / i
\I Advertisers ‘l Publishers |‘ X'jlse“t";gfl?eme“t
— J — |
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Ad Network Architecture: Spot Market

ML
B Test
UashBoard

SelfServe ADashBoard I| PDashBoard || Generate WebPage
Creatives ' AdCode e
Constraints I / i
\IAdvertisers |LPuinshers |‘ X'glﬂe“t";gfl?eme“t
J —_
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What is wrong with my ad?

OCT NOV DEC JAN FEB#
Cost $1000 $2000 $2000 $1500 $1000
Conversions 20 15 10 15 20

CPA ($/conv)  $50/conv $133/conv $200/conv $100/conv $50/conv

o

Keyword 1 ° Consumer behavior

— seasonality, time-of-day

yword 2 - der_nographics: geo,

. age, income, etc.

Advertiser Side

-Ad Creative

o -Landing page experience
-Pricing

"L | . . | . Publisher Side

# [Kourosh Gharachorloo, Google, 2007] -KW, TP, Position on Page
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Ad placement

Which Ads: Which ad creatives, landing page
should the advertiser use?

Real Estate:
— Which pages should the advertiser put ads on?
- Website, Category, Keyword
— Book pages based on
» A forward schedule
* A non-guaranteed fashion (specify bid, budget and
schedule)
Advertiser can do all this ...
— By themselves
— Or through an ad network / ad agency

Approaches
— Guess, Hire Experts, AB Testing, Fractional Factorial Design
— ... ake a portfolio approach (see next section
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Optimizing Ads: SEMs

- Search engine marketing (SEM) refers to services
that determine optimal ad placement.
— Many SEMs leverage AB Testing and DOE
— SEMSs optimize ad creatives, landing page, keywords
« Efficient Frontier(Keyword Mgt.)

Offermatica (Ad creative, landing page)
Optimost (Ad creative, landing page)
TaguchiNow (Ad creative, landing page)

- SEOs (Search engine optimization) refers to the
process of tailoring a web site to optimize its
(unpaid, or "left side", or "organic™) ranking for a
given set of keywords or phrases.

— For more details see

RuSSIR 2009, Petrozavodsk, Russia. Online Advertising © 2009 James G. Shanahan (San Francisco) 111
James.Shanahan_AT_gmail_ DOT_com



A/B Test: Border or not to Border?

« The ad unit has a border around it at present and you want to
know if removing the border would have any positive effect on
the performance of the ad. This is where A/B testing comes in.

(From 1073 to
1076 in online
advertising. see
Statistical power)

[For ads see:
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Which Ad Creative? Landing page?

* Design of experiments (DOE) (versus AB Testing)
— Which ads are working?

— Is the ad creative working well?
— Is the landing page experience working well?
— What features of creatives/landing pages work?
— Colour? Location? Text Style? Navigation? Action words?
* Fractional factorial designs are experimental
designs consisting of a carefully chosen subset
(fraction) of the experimental runs of a full

— The subset is chosen so as to exploit the
to expose information about the most important
features of the problem studied, while using a fraction of the
effort of a full in terms of experimental runs
and resources
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Dell DOE Study [TaguchiNow.com)]

« Target business employees with computers for

personal use

— Dell selected the Employee Purchase Program (EPP) e-mail
campaigns as the initial implementation of the Taguchi-based ad
optimization methodology

— EPP e-mail advertising campaigns are targeted to 450,000 individuals:
250,000 corporate employees, 150,000 government employees, and
50,000 professors at schools or universities, all of them users of Dell
computers at work.

— The aim of Dell's EPP e-mail campaigns is to sell computers, software
and peripherals to these individuals for their personal use leveraging
the fact that they are already familiar with the brand.

— As an enticing benefit, Dell’'s EPP members enjoy discounts of up to
12% and special promotions like free shipping, product bundles, and
others.
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DOE: Taguchi Testing Array

Fig. 4.1, right, shows a Taguchj

_ Factor Option 1 Option 2 Option 3
testing array that was selected t
analyze 7 factors with 2 option¥= | Promotion Single several -
and 4 factors with 3 options in on Teaser yes no -
18 test e-mails. This allowed to te Financing yes no .
10,368 campaigns with only 18 testg= | Price high-end low-end -
— a small fraction of all possibl® | sap*Promotion yes no -
combinations (only 0.2%!). o Discount 5% 10% _
N
h Image product people -
2 Subject Line creative promo dated
QO Headline creative romo seasonal
e P
. . Configurations two one none
Fig. 4.1. Factors and options
I Product Mix both notebook desktop

in the Taguchi testing arm£

(*) Software & Peripherals

7 factors(2 options); 4 factors with 3 options
18 ads out of 10,368 ads are tested
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Design Matrix

18 out of 10,368 Ads Tested

FACTORS
Test# | Promo | Teaser | Finance [ Price S&P | Discount| Image | Subject [Headline| Configs | Product
1 single na na high-end V=L 5% praduct | creative | creative twi bath
2z single na na high-end na 5% people pramo pramo one noteboak
3 single na na low-end Yes 10% product dated | seasonal| none desktap
4 single na Ves high-end yes 5% product | promo pramo nane desktap
5 single na yes high-end na 5% people dated | seasonal twvn bath
b single na yes low-end yes 10% product | creative | creative one natebook
o Fi single yes no high-end yes 5 people | creative [seasonal| one desktop
8 single yes na high-end na 0% product | promo | creative nane bath
9 single yes na low-end yes 5% product dated pramo two notebook
10 several na na high-end yes 0% product dated pramo one bath
11 several na na high-end na 5% product | creative | seasonal | none | notebook
12 several na na low-end yes 5% people promo | creative twn desktap
13 several na yes high-end yes 5% people dated creative nane | notebook
14 several na yes high-end na 10% product | creative | proma twen desktap
15 several na yes low-end yes 5% product | promo | seasonal one bath
16 several yes na high-end yes 10% product | promo | seasonal twn natebook
17 several yes na high-end na 5% product dated creative one desktap
18 several yes na low-end yes 5% people | creative | promo nane bath
18 test email ads were sent to 2,000 people each
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Send each email ad to multiple groups

RESPONSE DATA
Test # | Open Rate Sales

1 48% | 57% | $ - $ -

2 52% | 61% | $ - $ -

3 72% | 84% | $1,638 $1,530

4 10.5% | 11.6% | $1,913 $2,215

5 6.0% | 7.3% | $1,234 $1,755

6 50% | 58% | $ - $ -

7 12.7% | 138% | sao19 | sasez | Each group of

8 | 79% | 88% | $2,800 | s2033 | People and its

9 72% | 88% | $1,296 $1,104 | response (CTR or
10 1 55% 1 64% @ $ - | $ - | Sales)becomes an
11 49% | 58% | $ - $ -

12 | 42% | 50% | $ - | s - | example.E.g., 10
13 [55% [ 64% | $ - $ - | groupsleadsto 180
14 57% | 61% | $ - $ -

15 52% | 58% | $ - $ - examples :
16| 7.4% | 8.3% | $1,212 | ssge | Perform regression
17 [ 6.3% | 7.0% | $1,076 $1,555 | on data

18 9.9% | 10.9% | $2,448 $1,998
RuSSIR 2009, Petrozavodsk, Russia. Online Advertising © 2009 James G. Shanahan (San Francisco) 117

James.Shanahan_AT_gmail_ DOT_com



Most Influential Factors

FACTOR OPTIMUM OPTION INFLUENCE
Teaser yes 34%
Product Mix desktop 17%
Promotion primary 16%
Headline seasonal 13%
Configurations nhone 13%
Subject Line dated 7%
Financing yes or no 0 %
Price high-end of low-end 0 %
S & P Promotion yes or no 0 %
Discount 9% or 10% 0 %
Photo Product or Lifestyle 0 %
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 Before
optimization

RuSSIR 2009, Petrozavodsk, Russia

m:k | Employes Purchase Program

Part entertainment center, part warehouse.

Expand your muttmedia and storage options with a frae combo driva upgrade.
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Select
multiple ads

Features that worked well

PLEASE DO NOT FORWARD, COUPOCNS CAN OHLY BE USED GHCE
To unsubsgibe to Dell emails or to view our privacy palicy pleass yws the links below

UPTO

0% OFF

SELECT SYSTEMS!

5 T i-l‘r

~ Fig. 6.2. | .. 25% Off Dimension™ desktops $899 or more! !
A_ﬂﬂt 28. 2006 i jafore tax. EPP distouril, thip = L COLEPON cOGea DEIN i
I ﬁ L 3 l Enter coupon code at checkout: K2CXSXMZGX29WF J
No Seasonality, | |! 3% Off |I'!§].II!DHTM nutehnpks SEBE or more’ :
One Shopping Button, | | R TR i Sl | YOUR BEST DEALON
T C : Enter coupon code at checkout: GDZDKS2CX8TECQ | A DELL HOME PC
el e e
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DOE Works

« Click Through Rate increase: 5.2 times
« 7.1 times more sales per e-mail
« Annual sales before optimization: $8,900,000
« Annual sales after optimization: $63,100,000

« Data-based (as opposed to intuitions)!!

- Crowd-sourcing at its most efficient!!

« [TaguchiNow.com]

Audience Total Click Total $sales/

CAMPAICGN Type Size Clicks Thru Sales e-mail

June 17, 2004 EPP email Control email 268,610 8,058 3.00% $90,678 $0.34
June 17, 2004 EPP email | Optimized email 142,633 22,379 15.69% | $345,095 $2.42

RuSSIR 2009, Petrozavodsk, Russia. Online Advertising © 2009 James G. Shanahan (San Francisco)
James.Shanahan_AT_gmail_ DOT_com

121




Full Factorials

Order of Interactions
Facors Emees | 2 3 4 5 6 7 8 9 10|
2 2 1
— 3 3 3 1
4 4 6 4 1
S S 10 10 S 1
6 6 15 20 15 6 1
1) 7 BEEE 35 p9Sw 21 1
8 8 28 56 70 56 28 8 1
9 9 36 84 126 126 84 36 9 1
10 10 45 120 210 252 210 120 45 10 1

Box et al. (1978) “There tends to be a redundancy in [full factorial designs]
— redundancy in terms of an excess number of
interactions that can be estimated ...
Fractional factorial designs exploit this redundancy ...” -> philosophy




Fractional Factorial Design

Multiple factors impact the performance of an ad/landing page

DOE provides a means to quantify the impact of each factor in
an efficient manner

In the full factorial design, as the humber of factors increases,
the required number of groups increases exponentially.

The fractional factorial design reduces the number of groups
(ads/LPs in the case of advertising) that need to be evaluated

— FFD based on orthogonalization of features (use prescribed recipes: read
feature combinations and data requirements from tables)

— Used in automobile manufacturing industry (Developed 1960s)
— Linear Regression of CTR variable using the 18 input variables

Used by Optimost, Offermatica for Ad/LP optimization
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Online Advertising

Plug and play
—— Very modular

J//; (and confusing)

: Ad Network Ad L
Publishers « | AdExchange <, __ . _<— Advertisers
. gencies
Yield Manager

~__
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The Advertiser's View

« Some Tools and Pointers:

— Google's and keyword tool.
— Yahoo!'s , including the
— Ask's
— Third-party optimization and management tools and services such
as
and

— Some keyword bidding robots:

and
— The
Rusmevichientong, Williamson.
— Kitts, Leblanc.
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Challenges on Advertiser Side

* Ad Network needs to provide services
— Keywords suggestions
— Exact Match vs. Broad match (techniques??)

— Keyword disambiguation (R the statistical package vs.
the letter R; what does the advertiser mean?)

— Commercial intent of keywords (contextual advertising)
— When to pass on an adcall? Sentiment
— Geo targeting

— Categorization (organize ads by category, limit
publishers by category; e.g., porn, gambling, religious,
sports, etc.)

— Bundling Paradox: More segmentation implies expensive
CPM but smaller less competitive marketplace?
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Keyword Suggester

Enter one keyword or phrase per line:

data mining -
¥ Use synonyms

Get More Keywords ]

Choose data to display: LaEElEINE ENVECRITIE |3

Use the Possible Negatives column below to add a negative keyword for any keyword phrase that doesn't specifically reflect your business or
senvice. For example, if you advertise on the keyword books, and you don't sell used books, you can add the negative keyword -used. This means
your ad won't appear for the keyword used books. Learn More about using and choosing negative keywords.

More specific keywords - sorted by relevance (2

Keywords August Search Volume 2 Possible Negatives
data mining [ . Mo Megative
data mining software [ Add negative: -software »
data mining tools ] Add negative: tools »
web data mining [ Add negative: -web »
data mining tool 1 Add negative: -tool »
data mining technigues [ Add negative: -technigues »
data mining jobs [ . Add negative: -jobs »
what is data mining [ Add negative: -what is »
data mining tutorial ] Add neqgative: -tutorial »
data mining algorithms [ Add negative: -algorithms »
data mining solutions ] Add negative: -solutions »
introduction to data mining ] Add negative: -introduction to »
data mining solution ] Add neqative: -solution »
data mining applications ] Add negative: -applications »
data mining definition ] Add negative: -definition »
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Outline

 Introduction

« Online advertising background
« Business models

« Creating an online ad campaign

 Technology and Economics
— Advertisers (optimizing ROI thru ads and ad placement)
— Publishers (optimizing revenue and consumer satisfaction)
« Forward Markets
« Spot Markets (Auction Systems, Ad Quality, Budgeting)

 New Directions Bid ,,

- Challenges in online advertising Bid ,, *CTR ,,

« Summary Bid ,, *CIR ,, *ThrottleFa ct.
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Traditional Sales/Forward Markets

ONLINE ADVERTISING RATE SHEET

Chicagoreader.com
More than 100,000 unique users and 1,000,000 pageviews every week v

Chicagoreader.com focuses on function, popular features, and daily updates. Our home @5 an essential
portal into local arts, entertainment, and issues. Chicago Reader On Film archives m reﬁ 0,000 capsule
movie reviews. The Reader Restaurant Finderis an online guide to more than 3,000 ‘% staurants. Reader

Online Classifieds are a complete online marketplace for apartment rentals, hous& con o@bs pers@

services, and more.

Online Ad Rates \\
50,000 - 199,000 ad impressions o
200,000 - 499,000 ad impressions é 1 D[][] g

500,000 + ad impressions

Online Ad Sizes

Leaderboard Top of page ?’28 QD pi
Skyscraper Right hand c::llum s x 600
Rectangle Within text |:u:e|5 :QE | els

Hybrid Advertising: Print + Online
50% of our print readers use chicagoreader.com. (20 RIS

Advertisers can increase the reach and frequency of their print auwising with simultaneous ad impressions on
chicagoreader.com. Reach our total audience with the combinadfo® of the Chicago Reader and
chicagoreader.com.

RuSSIR 2009, Petrozavodsk, Russia. Online Advertising © 2009 James G. Shanahan (San Francisco) 129
James.Shanahan_AT_gmail_ DOT_com



Online Advertising Marketplaces

 Manual sale in large batches (1000s); Charge
advertiser on a CPM basis
— Price negotiated up front ; can be human-intensive
— ~1994 onwards
— Forward Markets/Guaranteed delivery

Static

« Self-serve; Charge advertiser on a CPC basis (1997)

* Auction on a per impression basis
— First-price auction, a la Goto/Overture (1997)
— Second-price auction (GSP); Google (2002) and Yahoo
— VCG auction (not adapted in practice)
— Spot market

Dynamic
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Ad Network Architecture: Spot Market

ML
B Test
DhshBoard

Ad upload/

Creatives
Constraints

ADashBoard : PDashBoard

Generate
AdCode

SelfServe

|
|

Publishers |‘

Advertisers‘

—

/

WebPage|

SERP
Www

Yield Management
Ad Network
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Ad Network Architecture: Forward Market

ML
B Test
UashBoard

pload/
SelfServe ADashBoard || | PDashBoard
Creatives
Constraints

Generate
AdCode

A

Advertisers‘

Publishers |‘

—

/

WebPage|

SERP
Www

Yield Management
Ad Network
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Ad Network Architecture: Forward Market

RuSSIR 2009, Petrozavodsk, Russia. Online Advertising © 2009 James G. Shanahan (San Francisco)
James.Shanahan_AT_gmail_DOT_com

From To ML
AB Test
Adl Ad2 | .Ad; Ad, Supply DashBoard
PageViews
PubZone 1 d;; d;; d;; 35
PubZone 2 : : : 50
PubZone3 d; d; d; 15 ]
E- Demand 45 20 30 5
Contracted
PageViews
I 2 77 ;
Ad upload/ \ G t ¥ A
SelfServe ADashBoard | | PDashBoard || G€énerate WebPageL
Creatives AdCode SERP
Constraints / WWW
\IAdvertisers‘ Publishers |‘ UIE.E) L IR E [EITR
i 1, Ad Network L
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Maximize Revenue: Ad Allocation Example

From To
Adl | Ad2 |.Ad; | Ad, Supply
PageViews
PubZone 1 d; d; d; d; 35
PubZone 2 50
PubZone3 d;; d;; d;; d;; 15
Demand 45 20 30 5

Contracted

PageViews

Use LP to generate the Ad display schedule to
maximize my revenue (or rev proxy, .i.e., CTR)
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Ad Networks and Optimisation

« Allocation of Ads to Publisher real estate
— Give ads play in network
» Optimize revenue subject to ....

* Inventory Management
— Contract as many impressions as possible but don’t oversell

 Media Buyer (Arbitrage) (NLP-problem)

— Talks to publisher
— Determine publisher mix for network

« Optimize publisher mix subject to constraints
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Technology

 Infrastructure (not going to discuss here)
— Commodity components such as Distributed
systems, Logging Systems, DBMS, OLAP,
Reporting, Load balancers Firewalls, server farms,
data-centers, Hadoop, GridSQL, etc.

« Targeting, Analysis, Yield management

— This is where the money (“*$d+,d+[BbMml]illion”) is
at!
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Outline

 Introduction

« Online advertising background
« Business models

« Creating an online ad campaign

 Technology and Economics
— Advertisers (optimizing ROI thru ads and ad placement)
— Publishers (optimizing revenue and consumer satisfaction)
« Forward Markets (Operations Research, segmentation)
» Spot Markets (Auctions, Game Theory, Ad Quality, Budgeting)

 New Directions
« Challenges in online advertising
« Summary
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Forward Markets

- Gradient Descent
* Linear Programming
« Quadratic Programming

+ Allocation of Ads to Publisher real estate
— Give ads play in network
« Optimize revenue subject to ....

* Inventory Management
— Contract as many impressions as possible but don’t oversell
 Media Buyer (Arbitrage)
— Frame as a non-linear programming (NLP) problem
— Talks to publisher
— Determine publisher mix for network
« Optimize publisher mix subject to constraints
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Gradient Descent

Common tool in optimisation, machine learning

— Perceptron learning, logistic regression, SVMs, LP, QP, NN,
etc.

Gradient descent is a

. To find a of a function
using gradient descent, one takes steps
proportional to the negative of the (or

the approximate gradient) of the function at the
current point.

— If instead one takes steps proportional to the gradient (i.e.,
not negative), one approaches a of that
function; the procedure is then known as gradient ascent.

Basic gradient descent (and other variations)
works well..... [Wikipedia
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A real-valued function decreases fast..

Gradient descent is based on the observation that if the realvalued function F(}{) 15 defined and differentiable in a

heighborhood of a paint A, then F(}:) decreases fastest if one goes from & in the direction of the negative gradient of 7
sta, —V F(a). tfllows that, if

b=a-+7VF(a)
fary = (0 a small enough number, then Flfa} = Flfb‘j. WYith this observation in mind, ane starts with a guess X far

r —

a local minirurm of 7| and considers the sequence Xg, X1, X3, . . . such that
Xpt1 = Xp — WV F(x,), n > 0.
Yfife have

Fixo) 2 F(x1) 2 F(xg) 2 -+,

50 hopefully the sequence {xn‘j converges to the desired local minimum. Mote that the value of the step size v is

allowed to change at every iteration.
[Wikipedia]
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Gradient Descent Example

Sradient descent is based on the observation that if the real-valued function FI::}:) I5 defined and

differentiable in a neighborhood of a point &, then F[}:) decreases fastest if one goes from A in the
direction of the negative gradient of F at &, —N/ F'(a). It follows that, if

b=a-~VF(a)
far = 0 a small enough nurber, then F'(a) = F(b). With this obsereation in mind, one starts

with a guess Xq for a local minimum of &, and considers the sequence Xg, X1, X9, . . . such that
Xnt1 = Xn — T VF(x,), n > 0. -
Wye have e,
- B
F(x0) > F(x1) > F(xg) > -+, X\
so hopefully the sequence (¢, ) corverges to the desired local minimum. Mo/ / / ~ H\\ "
E { ,-'. I j = - b x "'-l'
step size v is allowed to change at every iteration. {1/ \\,\ \ “-\,\ \ o\
I| II | .'II f / ! -~ _'\ . ".III ".I \ II', I'|
This process is illustrated in the picture to the right. Here & is assumed to be i. ! | | | ': | '
and that its graph has a bowl shape. The blue curves are the contour lines, the | | f,f" ' .-'I F ]
which the value of & is constant. A red arrow originating at a point shows the | I'LI : ] /*”r j,f /
gradient at that point. Mote that the (negative) gradient at a point is arthogaonal % /f’ 'S

gaing through that point. YWe see that gradient descent leads us to the bottom )
the point where the value of the function & is minimal. X 2 T x //
[Read Linear and Nonlinear Programming ‘\m__:__ _'__:_,_,.x-f’
by David G. Luenberger, Yinyu Ye

y 9 yu Ye] ~TWikiPedia].,
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Gradient Descent Algorithm

#python code

# find a local minimum of the function f(x)=x*-3x3+2 , with derivative f(x)=4x3-9x2,
# From calculation, we expect that the local minimum occurs atf x=9/4

x0Ild =0

xNew = 6

# The algorithm starts at
xX=6

eps = 0.01 #step size
precision = 0.00001

def [ prime(x):
refurn 4 *x**3 - 9 *x*2

while abs(xNew - xOId) > precision.:
x0ld = xNew
xNew = xNew - eps * f_prime(xNew)

print "Local minimum occurs at”, xNew

Homework:find a local minimum of the function
f(x)=6x°-8x%+6 using your favourite programming
language! Plot the function and comment on
boundedness.

Be careful about initial value? Why?

Prove that the candidate optimum, x*, is a maximum
or minimum using ”(x*); recall if f’(x*)< 0 then local
max, else f’(x*)> 0 then local min

Optional Homework: Is the function f{x)=6x°-8x°+6
a convex or concave function? Recall that if f’(x) < 0
forall x then fis concave; and if f’(x) > 0 then f(x) is
convex. Note: f”(x) is the second derivative of f

With this precision, the algorithm converges to a local minimum of 2.24996 in 70 iterations.
A more robust implementation of the algorithm would also check whether the function value
indeed decreases at every iteration and would make the step size smaller otherwise. One
can also use an adaptive step size which may make the algorithm converge faster.
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Linear Discriminant Model

A linear discriminant Many Hyperplanes Exist
function is linear in % \
the componentsof X € \".. T
(FSNT
Q
E.g., y=ax, + bx, + ¢ =3 N +
A S N
. o o +| |+
Training y=ax, +bx,+c=0 ("
Data N

Eg. X1 X2 Vy =1 o<t \

1130 |1]|/(X)=10 ify=0 N

2 +1 1 ify>0
cor | e [ eee [ eee | Class(X) = sign(< W, X >+b)j |

L |0 4 |-1 L — —
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Geometry: Linear Separators

, +b =0 | Basic hyperplane

wx, |[+b=0 More general

! <W, X> +b=0 Dot Product

onax+by+*cz=

given by the equatl
a,b,c) isa normal.

XiFora
d, the vector (

Represent a hyperplane, H, in terms of vector W, and scalar b
W determines the orientation of the hyperplane/discriminant plane
b denotes the offset (Perpendicular distance) from the plane to the origin

T Perpendicular distance from
r=W X+b point X to a hyperplane

RuSSIR 2009, Petrozavodsk, Russia. Online Advertising © 2009 James G. Shanahan (San Francisco) 144
James.Shanahan_AT_gmail_ DOT_com



Learning Linear Discriminants

Primal learning (e.g., perceptron)
involves learning weight values
associated with term/feature.

Wgt Vector Wo Wi
Instance\Attr | Xp X1 Xo Xn y
1 1 3 0 - 7 -1
2 1 4+
L 1 0 4, 8 -1
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Augmented Representations

Hyperplane as

an Augmented Augmented Drop bias term
weight vector Data vector
_WO_ b | 11 ]
W:W1:W1 X:xlle
W, | W, ] ESEN
Class (X )= sign(<W, X) +b)

1 Classification rule simplifies

Class (X)=Si87(<W’X>)‘
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Learning Linear Separators

« Linear discriminant functions have a variety
of pleasant analytical and pedagogical
properties!!

 Formulate the learning of a linear discriminant
function as a problem of minimizing a
criterion function

— E.g., training error

* Learning corresponds to finding a weight

vector

— A weight vector is can be thought of as a point in
weight space (version space).

— Each training example places a constraint on the
possible location of a solution vector (feasible region)
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Version Space

* A version space in or
is the subset of all hypotheses that are
with the observed training examples [Mitchell
1997].

« This set contains all hypotheses that have not
been eliminated as a result of being in conflict
with observed data.
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N Positive Class Vgrsion Space

INPUT SPACE m *WEIGHT SPACE
1 A 3| 2 |+1 ',‘w

|
| )
2
|
]
a
u
ua
]
s
u
|
|

Positive
Class H+

so shpuld yield positivewalue
when|substituted in to the "[1 3]
equation of the hyperplane [3,211, -3] = -3 [3,2]"[3, -3]=3
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Positive Class Version Space

t INPUT SPACE
., X
.
.
%
% 4
% +**
o % o*
S e «**
= N “t“
= 8%

' —
.
 J
v

‘ - -
. Positive X4
.
. Class H+
.
L 2
.
L
.
L
.
L
.
L
.
L
.
L
.
L
.
L
A 4 .
L
. . .
if WXy =0 then correct
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Positive Class Vgrsion Space
. INPUT SPACE
1 X,

[
'2 . ---“‘--
E 3 ‘- .----l"“
U’E ll““-
1 ‘ L2
\ Positive

Class H+

!:1 !'3]
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Negative Class Version Space

t INPUT SPACE
v
x2 ”0’
’0
’0
’0
’0
’0
. ." ”0
R 5
., o~
% Jo* X
4 mo ys ]
%,  Positive X1
/ *s, Class H+
/ *
® ’0,‘
- ”’Q
Negptive %,
Clags H- ‘o,’
%, Normalise Version Spjce
*
* . 4 *
Xy Label Normalizatijon

if WXy =0 then correct
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Pos/Neg Class Version S

A
INPUT SPACE
) X
. 2
.
.
.
.
¥
. +**
o % “‘t
> % o**
B 7 1% os*
C - o’
OE ‘L“‘ R
< O T
‘ n n
s Positive X4
.
4 +
pe . Class H
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
A 4 .
.
.
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Pos/Neg Class Version Space
1 |NPﬁT SPACE

if WXy =0 then correct *

RuSSIR 2009, Petrozavodsk, Russia. Online Advertising © 2009 James G. Shanahan (San Francisco) 154
James.Shanahan_AT_gmail_ DOT_com



Label Normalization

X _x1y
Label Normalized X, X,y
Vector Xy = y=
Solution Region | X XY
X1
NOTE: All examples fall
,QQ,Q on the positive side of

the plane
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Version Space with add?- constraints

Get every examp|e on the Get every example WELL INSIDE
right side of the tracks the right side of the tracks
N
)
N
W, \\
solution ,\\\\\*\
o region \
NXo w
PR I 1
TR
e l 3
/
(W.X,)y, 20Vi] (W.X,)y,2y>0Vi
[Adapted from Duda, Hart, Stork, 2001]
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Weight Vector and Solution Region

* The hyperplane weight vector, W, can be thought
of as specifying a point in the weight/version
space

« Each example places a constraint on W
- (<W, X>)y;> 0

* The solution hyperplane must be on the positive
side of each data induced hyperplane

« Solution region = the intersection of L half-
spaces

« Impose additional constraints

— Find solution that is in the middle of the solution region (i.e.,
that is insulated from data anomalies)

— Maximize the minimum distance from the training examples
to the separating hyperplane

* (<W, X>)yi>y
— yis known as the classifier margin
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Learning Algorithms in Version Space

SVM

Bayes Point
Machine

Perceptron

SVMs find the center of the largest radius hypersphere whose center
can be placed in version space and whose surface does not intersect

with the hyperplanes corresponding to the labeled instances.
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Learning a Weight Vector

. Q:o Find a solution to a set of linear inequalities ((<W, Xi>)yi
>

— Each example acts as a constraint
— (<W, X>)y;20

* A: Define an objective/criteria function
— That is minimized if Wis a solution vector

— Simple objective function J(W) is the number of
mistakes made by W
* (when 0 then W is a solution).

— Minimize this scalar function J(W) using gradient
descent procedures
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Gradient Descent

 To find a solution to the set of linear
inequalities (W, Xy, > 0;

 We define a criterion function J(W) that is
minimized if Wis a solution.

* This kind of problem can be solved by
gradient descent.

« General approach
— Start with some vector W(1).

— Generate then W(2) by taking a small step in the
direction of the steepest descent, i.e., “-VJ (W(k))”
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Objective Functions

« Consider the problem of finding a weight vector
that satisfies all the training data
- (<W, X>)y;> 0
* An obvious choice of objective

— Let J(W, X,,...X,) be the number of examples that are
misclassified
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Objective Function: Number of Errors
J(W, X;t) = Number of Errors

L JW, X,L)
- I_'JJ g
3 . . . 2t == '_:‘ ﬁ;’

AR

3 examples (label

normalized, i.e., Xy) e _
—Legal region N T
corresponds to the

-2

intersection of X .
- 1Y1 :
positive half-spaces = solution
=> Max J(W, X1 L) =3 0 e guor 2. w,
! 4

However, J(W, X.1) is piecewise constant

=> Very poor candidate for gradient search [Adapted from Duda,
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Perceptron Objective Function

Given linear Constraints (<W, X:>)y;> 0

JW, X,,...X,) or J(W, X,L)

— The number of examples that are misclassified is not continuous
JW.XH= " >

{X,1y;(W,X;)<0)

However, Jo(W, X,t), the Perceptron Objective
Function, is piecewise continuous

J,W.X))= > (-W'X,y)
Solution Region (Xilyi (WX, )<0)
— If no examples are misclassified then J, is zero
— J,is zero when Wis in the solution region

Intuitively, J, corresponds to sum of the margins
(negative) of misclassified examples
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Objective Function: Perceptron
Lw.xh= Sewxy) WX
1 . . . Jp(W X1L) {Xilyi<W’Xi><0}
; |

SREEl

-

-
-

-

: alution
| region
LW, 2 Y
' £
However, J (W, X,') is piecewise linear | +

=> Acceptable for gradient search [Adapted from Duda,
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Alternative Objective Function

1.  J(W, X,,...X) or J(W, X;}) be the number of examples that are
misclassified (Non contlnuous)

2. Jp(W, X,L), Perceptron Objective

3.  J,(W, X;h), Squared/quadratic Error (too smooth; converge to
boundary point; dominated by longest example vectors)

4. J(W, X,'), Scaled Margin-based
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Different Objective Functions

)

Jia) Jol

ol

gﬂuared/qiladratic Errot

of

o
Source: [DHS, 200141 _ , N ,
ssia. Online Advertising © 2009 James G. Shanahan (San Francisco)
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Perceptron using Gradient Descent
BATCH Update Rule

« General Update Rule
— W(k+1)=W(K) - nVJ (W(K))

Perceptron Objective Function

Gradient of Perc. Objective Func.

Perceptron BATCH Update Rule

Intuitively, drag weight vector closer to the misclassified examples
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Perceptron using Gradient Descent
Single Update Rule

« General Update Rule
— W(k+1)=W(K) - nVJ (W(K))

Perceptron Objective Function

_ Perceptron SINGLE Update Rule

Intuitively, drag weight vector closer to the misclassified example
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Remember: Class Version Space
t INPUT SPACE

Positive
Class H+

W[K]
®

if WXy >0 then correct *
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Perceptron Algorithm

Single-sample Primal Forr

- Given Training data S where each example i is of the
form (x;,...., x;,,y), and a learning rate 7

- Set W, to zeros; k=0;
* Repeat
— Fori=11to [Train/do
If (yi(<W, X>+b,)) <0then  //y#Sgn (<W,X;>+b,) MISTAKE

Wk+1= Wk+ n y,-X,- // Update weights with example i
k=K + 1 /I Update number of mistakes
End-If
— End-For
* Until no mistakes are made
 Return k, W
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Perceptron Update Example

J P(Ws X1 3)

Ky E T,
A e
e Wy AT F =
Y, ;*':_;ﬁ- ;'_.—;}:_.l.'_,:.g_j :_,-I:,E..;' .r'l'.-:l'. o ot A
T ¥ 7 - - - 7
it L Y N R

Start with W = [0, 0]
Update Sequence:
Xo, X3, X5 X5

Updating with X;y; and X,y
cause overshooting

Adaopted from: [DHS, 2001]
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Perceptron Learning: Text Example

Experiment: Perceptron for Text Classification

Perceptron with sta=0.1

30
“percepiron_her_ralnesmor.dat” ——
perceptron_Rer_tesiemor.dal” —a—
w25 hand_margin_swim_tesiemor.dat .— -
£
kil
El:lzll .
E:
i
?15 .
7
=
Ziok
|
I] B 'l 'l B : _=. - 2
1 2 3 < = B 7 i ! 10

Iteraticns

Tram on 1000 pes / 1000 neg examples for © acq™ (Feuters-21378).

[Source: http://www.cs.cornell.edu/Courses/CS678/2003sp/slides/perceptron_4up.pdf]
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plotLinearModel=function(X, w,b){
margins=classify.linear(X, w, b)
labels=ifelse(margins>0,1,-1)
plot(X,pch=ifelse(margins>0,"+","-"),xlim=c(-1,1),ylim=c(-1,1))
abline(0.5,1)
points(c(0,0),c(0,0),pch=19)
lines(c(0,-0.25),c(0,0.25),lty=2)
arrows(-0.3,0.2,-0.4,0.3)
text(-0.45,0.35,"W /* weight vector */")

#points(rnorm(200), rnorm(200), col = "red")

I — Perceptron learning

classify.linear = function(x,w,b) {
distance.from.plane = function(z,w,b) { sum(z*w) + b }
distances = apply(x, 1, distance.from.plane,w=w, b=b)
return(ifelse(distances < 0, -1, +1))

}

classify.linear.1ex = function(x,w,b) {
distances =sum(x*w) + b
return(ifelse(distances < 0, -1, +1))
}
perceptron = function(x, y, learning.rate=1) {
w = numeric(ncol(x)) # Initialize the parameters
b=0
k = 0 # Keep track of how many mistakes we make
R = max(euclidean.norm(x))
#browser()
made.mistake = TRUE # Initiaiized so we enter the whiie ioop

while (made.mistake) {
made.mistake=FALSE # Presume that everything’s OK
for (i in 1:nrow(x)) {
if (y[i] != classify.linear.1ex(x[i,],w,b)) {
#browser();
w <- w + learning.rate * y[i]*x[i,]
b <- b + learning.rate * y[i]*R*2
k <- k+1
made.mistake=TRUE # Doesn’t matter if already set to TRUE previously
slope=-1*(w[1]/w[2]);
b=-1*b/w[2]
#print(paste("slope is ",slope,"b is", b, sep=""))
#abline(b, slope, col="red",lw=1)

#i# Driver code
} x1=runif(5, -1, 1); x2=runif(5, -1, 1)
slope=-1*(w[1]/w[2]); f#tslope =1;
=-1*b/W[2] — *
print(paste("slope is ",slope,"b is", b, sep="")) Lo e g
abline(b, slope, col="blue",lw=3) X=cbind(x1=x1,x2=x2); #x=runif(10, -1,1)

return(w=w,b=b,mistakes.made=k)

} b=-0.5; #y= 1*x+b
euclidean.norm=function(X) {

euclidean.norm1 = function(x) {sqrt(sum(x * x))} w=c(-1,1)

enorms = apply(X, 1, euclidean.norm1 )

return(enorms) par(mfrow=c(1,1)) ## sets up screen for four plots

#traininaDataOld=traininaData



Gradient Descent for Ordinary Least Squares
Version space (weights)

Error surface; each point
corresponds to a different

100 linear model (hypothesis). The
vertical axis indicates the
squared error for the training
dataset WRT that weight
vector.

Q: Will this surface change for
different datasets?

[ 150

OLS with this objective has no local minima (convex as the Hessian, n by n
matrix of second derivatives, of the objective function is positive definite);

in this case n=2 variables.
ltarative varaiie eclnced farm enhittinn



OLS using Gradient Descent
BATCH Update Rule

« General Update Rule
— W(k+1)=W(K) - nVJ (W(K))

OLS Objective Function
True gradient is used to
update the parameters of

the model, corresponding
to the sum of the gradients

caused by each training
example (one sweep)
Gradient of OLS

Objective Func.
OLS BATCH Update Rule

Intuitively, drag weight vector closer to the misclassified examples
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OLS using Gradient Descent

Stochastic Gradient Descent
* General Update Rule  OpJine/Single Update Rule
— W(k+1)=W(K) - nVJ (W(K))

True gradient is approximated the
gradient of the cost function only
evaluated at one example; adjust
parameters proportional to this approx.
gradient. This can be much better for
large datasets.

E.g., Stochastic Gradient Decision
Trees; perceptron

Intuitively, drag weight vector closer to the misclassified example
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A Note the similarity between the equa- [2] Suppose f has continuous partial derivatives. An equation of the tangent

fion of @ fangent plane and the equation plane to the surface z = f(x, y) at the point P(xo, yo, zo) is
of a fangent line: ’
¥ = Yo =f(x)(x - x0) z = 2o = fe(x0, Yo)(x = Xo) + f(x0, Yo)(y = Y0)

Gradient Vector &
Tangent Plane

EXAMPLE 1 Find the tangent plane to the elliptic paraboloid z = 2x? + v* at the

point (1, 1, 3). - AN

q NN

SOLUTION Let f(x,y) = 2x* + y* Then \~

Calculate gradient vector by evaluatin? \
partial derivates at tangential point 5 % Al

flxy) =2y

Gradient vector at (1, 1) is (4, 2); fl1)=4 £1,1) =
f(1,1)=(4,2) 2 o ‘
f(1,1)=3 Then (2) gives the equation of the tangent plane at (1, 1, 3) as

1=3=4x-1)+2y-1)
Tangent plane at (1 ,0r1, 3)

with gradient (4,2) AR A -

Figure 2(a) shows the elliptic paraboloid and its tangent plane at (1, 1, 3) that we
found in Example 1. In parts (b) and (c) we zoom in toward the point (1, 1, 3) by
restricting the domain of the function f(x,y) = 2x* + y*. Notice that the more we
zoom in, the flatter the graph appears and the more it resembles its tangent plane.

(4,2) Gradient vector

(b) ()

FIGURE 2 The elliptic paraboloid z = 2x” + y* appears to coincide with its tangent plane as we zoom in toward (1.1, 3).

In Figure 3 we corroborate this impression by zooming in toward the point (1. 1)

1.U5
\._\ .“-. T \'-.
\ \\ \\\ \\ ‘\\ e \\ \.\_._.
\ \ .__.\\ \ \\\ \\ \
Y \ LY \\ \ \'.\ ".\ -\..- \ \ .. _\\
\\ \ \-\\ \_\\ -\\ ‘\ \.\ '\\ \ N .\\ \ \ \.\
N\ \"\ % Geloy 12 \ Y \\ \
08 - 0.95
FIGURE 3

Zooming in toward (1,1)
on a contour map of
fixy)=2x"+y*

[Adapted from
Multivariable Calculus:
Concepts and Contexts,

]

on a contour map of the function f(x, y) = 2x* + y*. Notice that the more we zoom an (San Francisco) 177
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Gradient as a vector field

The gradient of a quadratic form is defined to be (corresponds to slope in a single variable function)

— d . -

E At each point calculate the tangent
i — | 7 () | plane (this plane approximates, the
S 5 surface at the point and in that
9_r(z) | point’s neighbourhood). Recall

L Jx,,
o _ _ - Taylors Series?
The gradient 1s a vector field that, for a given point . points in the direction of greatest increase of f(x).

« Gradient (f’(x)) of
the quadratic form.
For every point x,
the gradient points
in the direction of
steepest increase
f(x), and is
orthogonal to the
contour lines.
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Gradient is orthogonal to contour
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Gradient (f’(x)) of the quadratic form for every point
X, the gradient points in the direction of steepest
increase f(x), and is orthogonal to the contour lines.

Contour plot of objective function f’x)), error
function in our case. Each ellipsoidal curve has a
constant error rate. For every point x, the gradient
points in the direction of steepest increase of f(x),
and is orthogonal to the contour lines.
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Ordinary Least Squares Algorithm

Single-sample Primal Forr

Given Training data S where each example i is of the
form (x;,...., x;,,y), and a learning rate 7
Set W, to zeros; k=0;
Repeat
— Fori=11to [Train/do

Wi, 1= Wit 1 (<W Xi>-y;) X
— End-For
Until convergence
Return W

Iterative, gradient descent based algorithm (as opposed to other
versions, such as closed form version, quadratic programming
version, maximum likelihood. What could they look like?)
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Exercise: predict height from shoe sizes

Homework
 Create a small dataset

— Collect height (in centimeters) and shoe sizes in
European sizes (e.g., | am 184 cm, with a shoe
size of 46).
« Train a OLS model using gradient descent

— Train OLS model using the iterative gradient
descent algorithm

— Plot model after each iteration
— Compare to model learnt using Im(.) (in R).

 Bonus: plot gradient, error contours, and
error surfaces for bonus credits!
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Closed form solution to OLS

How do we minimize (3.2)7 T}-.—*Im’te ]:".’ X the N » (p+ 1} matrix with
each row an input vector {(with a 1 in the first position), and similarly let
v be the N-vector of outputs in the training set. Then we can write the
residual sum-of-squares as

RSS(3) = (y = X3) (v = X 3. (3.3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect to 4 we olitain

dRSS .
aj-nﬁxﬂy—ﬂﬂ
- (3.4)
ARS8
= 2X7X.
daadt

Assuming (for the moment) that X has full column rank, and hence X7 X
is positive definite, we set the first derivative to zero

Xy —=X3) =0 (3.5)
to obtain the unique solution

3= (XTX)y ' X Ty, (3.6)
[Friedman et al. 20012]
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Gradient Descent: other tidbits

- Gradient descent can also be used to solve a system of
nonlinear equations.

 Below is an example that shows how to use the gradient
descent to solve for three unknown variables, x,, x,, and
Xs.

3x1 — cos(xoxs) — 1 =0
422 — 62503 4 22y — 1 =0 [WikiPedia]
exp(—x1x3) + 203 + m;-;r—a =10

* A more powerful algorithm is given by the
which consists in calculating on every step a matrix by
which the gradient vector is multiplied to go into a
"better"” direction, combined with a more sophisticated
algorithm, to find the "best" value of y.
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Newton-Raphson Method

In numerical analysis, Newton's method (also known as the Newton—Raphson method), named after [saac
Mewton and Joseph Raphson, i1s perhaps the best known method for finding successively better approximations
to the zeroes {or roots) of a real-valued function. Mewton's method can often converge remarkably guickly,
especially if the iteration begins "sufficiently near” the desired root. Just how near "sufficiently near” needs to
be, and just how quickly "remarkably quickly” can be, depends on the problem. This is discussed in detail
below. Unfartunately, when iteration begins far fram the desired root, Mewton's method can easily lead an
urmary user astray with little warning. Thus, good implementations of the method embed it in a routine that
also detects and perhaps overcomes possible convergence failures,

Given a function fix) and its derivative (%), we begin with a first quess xp . A hetter approximation xq is

f (Iu)

Ty =Tp— ——

ff(fFﬂ)'

[Wikipedia]
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Univariate Newton-Raphson Example

We wish to solve 4z cos® r +7/2 — 2o —sin(22) = 0. Cbviously, plotting Find ts of
flx) = Arcos? e + 7/2 — 22 — sin(22) and drawing tangents is not going to be I r_oo SO
very much fun! However, we can perform Newton-Raphson numerically,  equations that are

differentiable.
Our initial point is xy The gradient of f(x) at xy is given by [(ay), and the

tangent line to f(x) at xy is therefore given by, Given the slope F(x0), and a point x0

calculate the tangent line (at approximates
y — f(xo) = f'(xo)(x — xo) fin the neighbourhood of xo

To find xy, we must find the point where this tangent crosses the r-axis,
i.e tolet:

f (%)
0— flzo) = f(zo)(x1 — x0)

and therefore Tangent 2

. (%1, f(x1))
w0 thet Tangent 1 e
Sl )

1 =20~ oy [Adapted from
http://plus.maths.org/issue9/puzzie/solution.html]
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Multivariate Newton’s Method

Suppose that the objective f is a function of multiple arguments, f{w;y,wa, ... wp).
Let's bundle the parameters into a single vector, . Then the Newton update
15
?-En+l = iy — H_jl-r.wﬂ)?.ﬂmn} time{m]
Calculating gradient an9| Hessgn not Vi;yH o
ina but calculating the inverse
_ . . Qnsum"“ilf . e e o

where V f is the gradient of ? its vector of partial derivatives [0 f /Owy, 8f [Owa, . .. Of [Owy],
and H is the Hessian of f, its matrix of second partial derivatives, H;; =
& f [ fwsihw; .

Caleulating H and Vf isn't usunally verv time-consuming, but taking the
inverse of H is, unless it happens to be a diagonal matrix. This leads to various
quasi-Newton methods, which either approximate H by a diagonal matrix,
or take a proper inverse of H only rarely (mavbe just once), and then try to
update an estimate of H—!(w,) as w, changes. (See section 8.3 in the textbook
for more. )

In R, have a look at

?optim #method=BFGS ]
[Hand, Manilla, Smith, Data Mining, Section 8.3]
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Limitations of Newton’s Method

Step size can a guessing game in Newton’s method
b=a—~VF(a)
There are other methods for finding minimums besides

Newton’s method

— Such as gradient descent, or variations of the
avoid this guessing

Applications
— Finding minimum or maximum of a function (e.g., linear regression)
— Neural Networks
— Linear Programming, quadratic programming.
— Finding maximum likelihood estimates

« Unlike EM, such methods typically require the evaluation of first
and/or second derivatives of the likelihood function.

. E.g., Logistic Regression In R, have a look at optim()
type ?optim #method=BFGS
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Newton < Gradient Descent < Conjugate

1/

\
\
IIII

,ﬂ-"'"f_-—.__-_

Newton’s method requires evaluation, storage
and inversion of matrix; computationally
complex.

Gradient descent typically converges slowly.

Conjugate direction methods is intermediate b/w
the above two, which has proved to be extremely
effective in dealing with general objective
functions.

A comparison of the convergence of

with optimal step size (in green) and
conjugate gradient (in red) for minimizing a
quadratic function associated with a given linear
system. Conjugate gradient, assuming exact
arithmetics, converges in at most n steps where
nis the size of the matrix of the system (here
n=2).
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Forward Markets

- Gradient Descent
- Linear Programming
« Quadratic Programming

+ Allocation of Ads to Publisher real estate
— Give ads play in network
« Optimize revenue subject to ....

* Inventory Management
— Contract as many impressions as possible but don’t oversell
 Media Buyer (Arbitrage)
— Frame as a non-linear programming (NLP) problem
— Talks to publisher
— Determine publisher mix for network
« Optimize publisher mix subject to constraints
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Linear Programming (LP)

Linear programming is a mathematical technique
that enables a decision maker to arrive at the
optimal solution to problems involving the
allocation of scarce resources.

Typically, many economic and technical problems
involve maximization or minimization of a certain
objective subject to some restrictions.

LP is a technique for optimization of a linear
objective function, subject to linear equality and
linear inequality constraints
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LP Outline

Introduction and some motivating advertising problems
Linear Algebra Basics Review

Fundamental theorem of LP

Matrix-view and the fundamental insight

Duality

Interior point Algorithm

« Transportation Problem

« Applying linear programming to online advertising

« Summary
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Ad Network Architecture:Forward Markets
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Ad Networks and Optimisation

« Allocation of Ads to Publisher real estate
— Give ads play in network
» Optimize revenue subject to ....

* Inventory Management
— Contract as many impressions as possible but don’t oversell

 Media Buyer (Arbitrage) (NLP-problem)

— Talks to publisher
— Determine publisher mix for network

« Optimize publisher mix subject to constraints
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History of LP

* The founders of the subject are ,
1939 a Russian mathematician who developed linear
programming problems in 1939, ,
who published the in 1947,
1947 , who developed the theory of the duality in
the same year.

« The linear programming problem was first shown to
be solvable in polynomial time by
iIn 1979, but a larger theoretical and
1984 practical breakthrough in the field came in |§

when Introduced a ne F‘:r":i '—,J

for solving linear programmi

problems. m L—‘ F‘i
pRigle

LINEAR ALGEBRA
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What is Linear Programming

» Linear programming (LP) =
— Linear Algebra + inequalities + optimization (minimize or
maximize)

 LP is a technique for optimization of a linear
objective function, subject to linear equality and
linear inequality constraints.

— Informally, linear programming determines the way to
achieve the best outcome (such as maximum profit or lowest
cost) in a given mathematical model and given some list of
requirements represented as linear equations.

— More formally, given a polytope (for example, a polygon or a
polyhedron), and a real-valued affine function

U{IIJIE! . !Iﬂ-} = 01> + Cog + -+ - + Cply T d
— defined on this polytope, a linear programming method will
find a point in the polytope where this function has the

smallest (or largest) value.
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Types of LP descriptions

3x,—5x, <15

2x,+3x, =12

3x, +x, =22
x, <0,(x, free)

max x, + x,

To deal with different types of objectives and
constraints we convert each linear program to
standard form.
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Standard Form
(according to Hillier and Lieberman)

max ¢,X; +¢,X, +...+CyX,
subject to
a X, +a,x, +..+a,yxy <b,

Ay X, +Arp Xy +.c+ Ay Xy <D,

Ay X, T AyyXy +ootaynXxy <by,

x;20,j=1.N
_ _ max c'x
Concise version:
subject toAx < b
x=20
A is an m by n matrix: n variables, m constraints
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Converting into Augmented Form

Slack/surplus variables
Replacing ‘free’ variables
Minimization vs maximization

See Luenburger (page 11,12 etc)
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Standard Form to Augmented Form

max ¢, x; +¢,X, +...+Ccyxy
subject to
a, X, +a,x, +...+a,,yxy <b,

Ay X, +0pXy +ooctayy Xy < b,

Ay X, T A4y Xy Tt Ay Xy <by,
x;20,j=1.N

max ¢ x; +C,X, +...4+cyXy
subject to
a, X, +a,x, +...+a,yxy +x =b,

Ay X, +0pXy, +oc+ayyXy +X, =D,

Ay X, + Ay X, +otay Xy + Xy =by,
X5 X, >0,j=1.N,i=1..m

max cx
subject toAx < b
x>0

A is an m by n matrix: n variables, m constraints
p)

max c¢’x

subject to[ A, I]F} =b
X

x=0

RuSSIR 2009, Petrozavodsk, Russia. Online Advertising © 2009 James G. Shanahan (San Francisco)

James.Shanahan_AT_gmail_ DOT_com

199



Farmer Example

- Suppose that a farmer has a piece of farm land,
say A square kilometers large, to be planted with
either wheat or barley or some combination of the
two.

« The farmer has a limited permissible amount F of
fertilizer and P of insecticide which can be used,
each of which is required in different amounts per
unit area for wheat (F1, P1) and barley (F2, P2).

« Let S1 be the selling price of wheat, and S2 the
price of barley. If we denote the area planted with
wheat and barley with x1 and x2 respectively,
then the optimal number of square kilometers to
plant with wheat vs. barley can be expressed as a
linear programming problem
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Farmer Example: LP

maximize S;x, + S,x, (maximize the revenue - this is
the “objective function™)

subject to x;, +x, < A (limit on total area)
F.x, + F,x, < F (limit on fertilizer)
Px, + P,x, <P (limit on insecticide)
x, >=0,x, >0 (cannot plant a negative area)

which in matrix form becomes

maximize [51 S?] Il]

L3
1 1 A
i L L
subject to F, F [I } < |F|, [I } =0
2 2
P 1 P 2 - P -
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Farmer Example: Augmented Form

e Linear programming problems must be converted
into augmented form before being solved by the
simplex algorithm. This form introduces non-
negative slack variables to replace non-equalities
with equalities in the constraints. The problem
can then be written on the following form:

Maximize Z in: [1 T I]] Z [D]

<
|

0 A 1
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Farmer Example: Augmented Form

The example 1 above becomes as follows when converted
Into augmented form:

maximize S;x; + S,x, (objective function)

subject to X, +x, + x3=A (augmented constraint)
Fx, + Fx, <F +x,=F (augmented constraint)
Px,+Px,+x, =P (augmented constraint)

where Xx3,X,,X; are (non-negative) slack variables.

Which in matrix form becomes:

objective 7] L
. 1 |-8 -8 00 0 |x| [o] |
Maximize Z in: 0 1 T 1T 0 ol |z A I3
0o B B0 10||n|=|F] | 2"
0 P P loo 1|z P| |
ProblemVars Slacks | s - LRl
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Outline

 Introduction

« Linear Programming

« Graphic Example

« Matrix-view and the fundamental insight
* Theory and proofs??

« Simplex and Dual Methods
— Standard Form
— Simplex and Dual
— Proofs

* Interior point Algorithm

« Transportation Problem

« Applying linear programming to online
advertising [Nakamura]
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DEFINITION The columns of A are linearly independent when the only solution to
Ax =0 is x = 0. No other combination Ax of the columns gives the zero vector.

Li Ind dent
With linearly independent columns, the nullspace W({A) contains only the zero vector. I n ea r n e pe n e n u

Let me illustrate linear independence (and linear dependence) with three vectors in R

1.  If three vectors are net in the same plane, they are independent. No combination GILEERT STRAMNG
of ¥, ¥, ¥3 in Figure 3.4 gives zero except Ov; + Ovz + Ovz. — :
| 4 A, | P i
2. If three vectors wy, w, Wy are in the same plane, they are dependent. . | t

| |
This idea of independence applies to 7 vectors in 12-dimensional space. If they - -2 U
are the columns of A, and independent, the nullspace only contiing x = 0, Now we r 1 [ ;‘ ﬁ
choose different words to express the same idea. The following definition of indepen- . !
dence will apply 10 any sequence of vectors in any vector space. When the vectors are . Y
the columns of A, the two definitions say exactly the same thing, r 'i[ r‘:-: r[- |

LIMEAR ALGEBRA

DEFINITION The sequence of vectors v, ..., v, 15 linearly independent if the only
combination that gives the zero vector is Doy +0Dwes + 0w, Thos linear indepen
dence means thot

By + X18s - Tl 0  only happens when all x's are zero. (0}

If a combination gives 0, when the x's are ot all zero, the vectors are dependent.
Correct language: “The sequence of vectors is linearly independent.” Acceptable
shoricut: "The wectors are independent.” Unacceptable: "“The matnx s independent.”
A sequence of vectors is either dependent or independent. They can be combined
o give the sero vector {with nonzero x's) or they can't. So the key question 15: ' Which
combinations of the vectors give zero? We begin with some small examples in R

(a) The vectors (1,0) and (0, 1} are independent.

LE:1) 1M VECIONS (1, U] and g, 1} are inaependent.
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Background on Matrices

Ag A, X b
a, X, +a,x, +..+a,xy <b,
—
Ay X, +Arp Xy + .o+ Ay Xy <D, mXm n-mXm! < 5¢
cl =&
Ay X+ Ay Xy +ot Xy <Dy, 0
0

AX= . .

A-1 Ab —A-b Solve this system of equations through
X1‘ 1. Gaussian elimination or

Ix=A""b 2. Using matrix inverses

Equivalent conditions for invertibility of a square matrix A:

B invertible
rank L = n

det 2 # 0

columns (and rows) are linearly independent

Zx = 0 has a unique solution

If A is invertible, then Ax=b has a unique solution for any b. If A is not
invertible, then Ax=b either has no solution or infinitely many
solutions.

)6



Basis of

This combination of properties is fundamental to lincar algebra. Every vector v in the

space is 4 combination of the basis vectors, because they span the space. More than

that, the combination that produces v is unigue, because the basis vectors vy, ... , Uy
are independent:
There is one and only one way to write v as a combination of the basis vectors, P 7

A Basis for a Veclor Space T

In the cy plane, a set of independent vectors could be quite small = just one vector. A
set that spans the xv plane could be large —three vectors, or four, or infinitely many.
One vector won't span the plane. Three vectors won't be independent. A “basis” is
just right. We want enough independent vectors fo span the space.

DEFINITION A basis for a vector space is & sequence of vectors that has two prop-
eries ab once:

. [he vectors are Nnearly independent.

2. The vectors span the space.

This combination of properties is fundamental fo linear algebra. Every vector v in the J
space is a combination of the basis vectors, because they span the space. More than
that, the combination that produces v i3 wnigue, because the basiz veciors vy, ... ., ¥y
are independent:

There is one and only one way to write v as a combination of the basis vectors,

Reason: Suppose v = ayv) <+« +a,0, and also v = bye; +- - -4+ b,y v,. By subtraction
g = bydwy + -« - + (@q = by )y, is the zero vector. From the independence of the »'s,
each a; = b; = 0. Hence a; = By

Example 6 The columns of [ = [D

?] produce the “standard basis™ for R,

The basis vectors i = [:]] and f = [‘i}] are independent. They span R*,

Everybody thinks of this basis first. The vector { goes across and § goes straight up.
The columns of the 3 by 3 identity matrix are the standard basis i, j, & The columns
of the n by n identity matrix give the “standard bazis”™ for R™. Now we find other
bases.

SIS
gl

LINEAR ALGEBRA

when A is invertible then for
Ax=b
x=A"b

l.e., b can expressed as a unique linear
combination of the basis vectors

v, 4 (1,1)

V.=(1,0)T
V,=(0,1)" Standard basis
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Invert Matrix and Basis

Example 7  (Important) The columns of any imvertible n by n matrix give a basis —
for R™:

I 0

a=(" 2 ana a=|1 1 0| buno a=|! 2
“ 12 5 _|1| 12 4

When A is invertible, its columns are independent. The only solution to Ax =0 is x =

0. The columns span the whole space R" —because every vector b is a combination of
the columns. Ax = b can always be solved by x = A~ 'h. Do you see how everything
comes ogether for invertible matrices? Here 1t is in one sentence:

3) The vectors v, ... . v, are a basis for B" exactly when they are the columas of
an n by n invertible matrix. Thus R" has infinnely many different bases.

When any matrix has independent coluomns, they are a basis for its column space.
When the columns are dependent, we keep only the pivar coltmmns —the r columns with JEgEs: q
pivols. They are independent and they span the column space, slele

LINEAR ALGEBRA

IK The pivew columns of A are a basis for its column space. The pivit rows of A

are 4 basis for s pow space. S0 are the pi‘n:ﬂ revwes of its echelon form K. 208



Non-invertible matrices
Example 8 This matrix is not invertible. Its columns are not a basis for anything!

2 4 . 1 2
A_|:3 6:| wh::hr-r:du-::ﬁmﬂ_[ﬂ D]'

Column 1 of A is the pivol colemn, That column alone 15 a basis for its column space.
The second column of A would be a different basis. So would any nonzero multiple
of that column. There is no shortage of bases! 50 we often make a definite choice:
the prividt columns,

MNotice that the pivot column of this B ends in zero. That column is a basis for
the column space of &, but it is not even a member of the column space of A. The
column spaces of A and R are different. Their bases are different,

The row space of A is the same as the row space of K. It contains (2, 4) and
(1, 2) and all other multiples of those vectors, As always, there are infinitely many
bases to choose from. [ think the most natural choice 15 1o pick the nonzero rows of
B (rows with a pivol). So this matrix A with rank one has only one vector in the basis:

-

Basis for the column space: [;:| . Basis for the row space: [;]

The next chapter will come back to these bases for the column space and row space.
We are happy first with examples where the siteation is clear (and the idea of a basis
is still new). The next example is larger but still clear. b
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Find a basis for for b in terms of 4 cols

Matrix-vector multiplication as a linear combination of columns.

Basic solutions of hx=h

Reduced row echelon form
So can read off the soln

1101 00 0
. . 1100-10 0 .
Consider the matrix A = 1010 01 ol Notice that columns 1,2,3,4 are
1010 O00-1
not a basis. Neither is 2,3,4,5. |But 1,2,4,6 is basic.
3
2 . . . .
Let b = c |- How can we find the unigue (basic) solution to Ax=b that uses
4

only columns 1,2,4,67 If we multiply both sides of the equation Ax=b by
the inverse of the 4x4 matrix consisting of those columns, we get the

ANSWer : B-1A X = B-1b

1110y1 D 00 1 ‘@0 10 00 -1 4

1100 0 10 -1 1)@ -10-10 1 -2

1001 | 1-10 o ®° o o@® 10 o|l*T | 1

1000 0 01-1 )0 00 0@ 1, 1
is an equivalent system. _HWoen the gystem is rewritten in this equivalent
form, the basic sclution becomes evident. If we are

only interested in solutions for which x20, then x would be an infeasible

basic solution since x, is negative.

This process could be repeated for every set of basic columns.
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Basic Solution (to a system of eqns.)

Ag A, X b

a, X, +a,x, +..+a,yxy <b,

-
Ay X; +ApX, +... 4y Xy S D, mXm n-mXm >é - E

0
Ay X+ Ayr X, +.o+ay Xy < by,

0
Given Ax=b A system of equations (8)

Definition. Given the set of m simultaneous linear equations in n
unknowns (8), let B (denoted Ag) be any nonsingular mxm
submatrix made up of columns of A.

Then, if all n-m components of x not associated with columns of
B are set equal to zero, the solution to the resulting set of
equations is said to be a basic solution to (8) with respect to the
basis B. The components of x associated with columns of B are
called basic variables. The remaining n-r variables are non-basic.

Assume that the first m columns of A make up B (denoted as Ag)
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Basic Solution (to a system of eqns.)

Ag A, X b

a, X, +a,x, +..+a,yxy <b,

-
Ay X; +ApX, +... 4y Xy S D, mXm n-mXm >é - E

0
Ay X+ Ayr X, +.o+ay Xy < by,

0
Given Ax=b A system of equations (8)

Definition. Given the set of m simultaneous linear equations in n
unknowns (8), let B be any nonsingular mxm submatrix made up
of columns of A.

In the above definition we refer to B as a basis, since B consists
of m linearly independent columns that can be regarded as a
basis for the space R™. The basic solution corresponds to an
expression for the vector b as a linear combination of these basis
vectors. Assume that the first m columns of A make up B
(denoted as Ag)
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Full Rank Assumption

« Ax=b A system of equations (8)

In general, of course, Eq. (8) may have no basic solutions. However, we may
avoid trivialities and difficulties of a nonessential nature by making certain elementary
assumptions regarding the structure of the matrix A. First, we usually assume that
n > m, that 1s, the number of variables x; exceeds the number of equality constraints.
Second, we usually assume that the rows of A are linearly independent, corresponding
to linear independence of the m equations. A linear dependency among the rows of
A would lead either to contradictory constraints and hence no solutions to (8), or to
a redundancy that could be eliminated. Formally, we explicitly make the following
assumption in our development, unless noted otherwise.

Full rank assumption. The m x n matrix A has m < n, and the m rows of A
are linearly independent.

Under the above assumption, the system (8) will always have a solution and,
in fact, it will always have at least one basic solution.
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Degenerate Basic Solution

Ag A, X b
mXm n-mXm < _ >
cl =&

0

0

* The basic variables in a basic solution (i.e., in x)
are not necessarily all nonzero. This is noted by
the following definition.

* |f one or more of the basic variables in a basic
solution has value zero, that solution is said to be
a degenerate basic solution.
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Basic Feasible Solution

all'xl +a12X2 +...+a1NxN S bl AB Anb X b
Ay X, +0pX, +...Fayy Xy < b, _ _
mXm n-mXm| X| _ X
c| = |E
Ay X, T Ay X+t ayyXy <b, .
x;20,j=1.N :
Ax=b
x20 (egn. 10)

« A vector x satisfying (10) is said to be feasible for these
constraints. A feasible solution to the constraints (10)
that is also basic is said to be a basic feasible solution;

 if this solution is also a degenerate basic solution, it is
called a degenerate basic feasible solution.
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An Example with 35 (possible) basis

X, +x, +x, = 3
X, +x, — X = 2
X, + X, + X = 5
x;20,j=1.7
7 .
There are (4) = 35 ways to choose four columns from the 4X7 coefficient
matrix. Each fits into one of 3 categories:
i. The 4 columns do form a basis and the corresponding basic solution is
feasible (all variables are nonnegative).
1i. The 4 columns do form a basis (the 4x4 matrix is invertible) but the
corresponding basic solution is infeasible (one variable is negative).
iii. The corresponding 4 columns of the coefficient matrix form a singular
(not invertible) 4x4 matrix. In other words, these columns do not
form a basis.
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35 possible basis

Below are all 35 possibilities. For basic solutions, we write the column
numbers of the basis, the wvalue of the objective, the solution vector, the
equivalent system of equations that displays the solution vector. For

example, the first basic feasible solution uses columns 1,3,4,6, the
corresponding system of equations is
1 100—10 0

0001 10 O

0 00 01 1
and the solution obtained by setting nonbasic variables equal to 0 is
(2,0,2,1,0,1,0), where the value of the objective function is X,+2X,+3X,=8.

2
3 2
R

1

category 1: basic feasible solutions
columns: {1, 3, 4, 6} objective = 8 = (2,0,2,1,0,1,0) vertex A
{{2, o, o, o}, {1, -1, o, 0}, {0, 1, O, }, {0, 0, 1, 0},
{-1, 1, 1, o}, {o, o, 0o, 1}, {o, —1, o, 1}, {2, 2, 1, 1}}
columns: {1, 3, 4, 7} objective = 11 x = (2,0,3,1,0,0,1)
{{2z, o, o, o}, {1, -1, 0, 0o}, {0, 1, 0, 0}, {0, 0, 1, 0},
{-1, 1, 1, o}, {0, 1, o, 1}, {0, O, o, 1}, {2, 3, 1, 1}}

...continued over the next couple of slides
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Category 1:8 Ba sic Feasible Solutions

columns: {1 3, objectlve = x = (2,0,2,1,0,1,0) vertex A
{{1, o, 0, o0}, {1, —1 , 0}, {o, 1, , 0}, {0, o, 1, 0},
{-1, 1, 1, o}, {o, o, 0, 1}, {o, -1, o, 1}, {2, 2, 1, 1}}
columns: {1 a, 7} objective = 11 x = (2,0,3,1,0,0,1)
{{1, o, o, 0} {1, -1, o, o}, {o, 1, o, o}, {0, 0, 1, 0},
{-1, 1, 1, o}, {o, 1, o, 1}, {0, o, o, 1}, {2, 3, 1, 1}}
columns: {1, 3, 5, 6} objective = 6 *MIN* x = (3,0,1,0,1,1,0)
{{z, o, o, o}, {2, -1, o, 0o}, {0, 2, 0, 0}, {1, -1, 1, 0O}
{o, o, 1, o}, {0, o, o, 1}, {0, -1, o, 1}, {3, 1, 1, 1}}
columns: {1, 3, 5, 7} objective = 9 x = (3,0,2,0,1,0,1)
{{11 Or Or O}r {lr _lr O_, O}r {Of 1: Or O}J {1: _1: 1: O}r
{0, o, 1, o}, {0, 1, o, 1}, {0, 0, 0, 1}, {3, 2, 1, 1}}
columns 2, 3, 4, objective = 16 X (0,2,4,1,0,1,0) vertex B

: | 6} =
{{z, 12, o, o}, {21, 0, 0, 0}, {0, 1, 0o, 0}, {0
1 o, o, 1}, {o, -1, o, 1},

columns: {2, 3, 4, 7} objective = 19 x = (0,2,5,1,0,0,1) vertex C

{{z, 1, o, o}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, O},
{-1, o, 1, o}, {0, 1, o, 1}, {0, 0, 0, 1}, {2, 5, 1, 1}}

columns: {2, 3, 5, 6} objective = 18 x = (0,3,4,0,1,1,0)

{{, 2, o, o}, {1, 0, o, o}, {0, 1, 0, 0}, {1, 0, 1, O},
{0, o, 1, o}, {0, o, 0o, 1}, {0, -1, o0, 1}, {3, 4, 1, 1}}

columns: {2, 3, 5, 7} objective = 21 *MAX* x = (0,3,5,0,1,0,1) vertex D

{{1, 1, o, o}, {1, o, o, o}, {o, 1, o, o}, {1, o, 1, O}, M%
{0, o, 1, o}, {0, 2, 0, 1}, {0, O, O, 1}, {3, 5, 1, 1}}
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Category 3: 14 Not Basic Solutions

{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {21, 2, 3, 7}, {1, 2, 4, 5}, {1, 2,
6, 7y, {1, 3, 4, 5}, {1, 3, 6, 7}, {2, 3, 4, 5}, {2, 3, 6, 7}, {2, 4, 5, 6},
{2, 4, 5, 7}, {3, 4, 6, 7}, {3, 5, 6, 7}
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Linear Program

max ¢ x, +C,X, +...+CyXy
subject to
a, X, +a,x, +...+a,yxy <b

Ay X, + Ay Xy +.cot Ay Xy <D,

Ay X, T Ay Xy +otayn Xy < by,
X; >0,j=1..N

- max c'x

subject toAx < b
x=20

A is an m by n matrix: n variables, m constraints
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Concise version




Linear Programming in Standard Form

minimize ¢l x
subjectto  Ax = b,

- 0.

|\

X

{x : x > 0} is the non-negative authant cone.
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Reduction to Standard Form

e Eliminating "free” variable: use the difference of two nonnegative variables

—&r . I

e Eliminating inequality: add slack variable

T

alx <b=— alx+s=0b. 0

)
|\

Tx>b=—alx—s=b. s >0

a

e Eliminating upper bound: move them to constraints
r<3—=x+s=3, s>0
e Eliminating nonzezro lower bound: shift the decision variables

r>3—xr:=x—3

e Change max ¢! xtomin —c!x
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An Example with 35 (possible) bases

An example with eight basic feasible solutions

Consider the LP: In standard form, we write this as
min or max minimize or maximize X, + 2X, + 3%, = objective
X, + 2X, + 3X .
1 2 3 subject to X, + X, + X, = 3
subject to X+ X, - %X = 2
2 <x, +x, <3 —
1 2 X4 + X5 + X, = 5
4 < X, + X4 < 5 Xq + X,y - Xq = 4
X,20, X,20, %320 X,20, X,20, X320, X,20, X 20, X220, X,20
7 .
There are (4) = 35 ways to choose four columns from the 4Xx7 coefficient
matrix. Each fits into one of 3 categories:
i. The 4 columns do form a basis and the corresponding basic solution is
feasible (all wvariables are nonnegative) .
ii. The 4 columns do form a basis (the 4X4 matrix is invertible) but the
corresponding basic solution 1s infeasible (one variable is negative).
iii. The corresponding 4 columns of the coefficient matrix form a singular

(not invertible) 4x4 matrix. In other words, these columns do not
form a basis.
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An Example with 35 (possible) bases

An example with eight basic feasible solutions

Consider the LP: In standard form, we write this as
min or max minimize or maximize X, + 2X, + 3%, = objective
X, + 2X, + 3X .
1 2 3 subject to X, + X, + X, = 3
subject to X+ X, - %X = 2
2 <x, +x, <3 —
1 2 X4 + X5 + X, = 5
4 < X, + X4 < 5 Xq + X,y - Xq = 4
X,20, X,20, %320 X,20, X,20, X320, X,20, X 20, X220, X,20
7 .
There are (4) = 35 ways to choose four columns from the 4Xx7 coefficient
matrix. Each fits into one of 3 categories:
i. The 4 columns do form a basis and the corresponding basic solution is
feasible (all wvariables are nonnegative) .
ii. The 4 columns do form a basis (the 4X4 matrix is invertible) but the
corresponding basic solution 1s infeasible (one variable is negative).
iii. The corresponding 4 columns of the coefficient matrix form a singular

(not invertible) 4x4 matrix. In other words, these columns do not
form a basis.
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Reduce Search to Basic Solutions

Optimal feasible solutionc feasible solutions c basic solutions

This theorem reduces the task of solving a linear program to that of searching
over basic feasible solutions. Since for a problem having n variables and m

constraints there are at most
n FII
m m!(n—m)!

basic solutions (corresponding to the number of ways of selecting m of n columns),
there are only a finite number of possibilities. Thus the fundamental theorem yields
an obvious, but terribly inefficient, finite search technique. By expanding upon the
technique of proof as well as the statement of the fundamental theorem, the efficient
simplex procedure is derived.

n variables (including slacks)
m Constraints
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LP: Geometry

Geometry. -
— Forms an n-dimensional (P) max > cjx;
polyhedron/polytope. % j=1

n
s. i. Za,lxl < bi 1<i<m
j:

Xj 2 0 1<j<n
Extreme
points
Convex Not convex

— Convex if y and z are feasible solutions, then so is 2y + "2z.

— Extreme point: feasible solution x that can't be written as "2y +
12z for any two distinct feasible solutions y and z.
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Connecting Algebra with Geometry

Theorem. (Equivalence of extreme points and basic solutions). Let A be an
m X n matrix of rank m and b an m-vector. Let K be the convex polytope
consisting of all n-vectors X satisfying

A

’ 17
0 (17)

X
X

\Y

A vector X is an extreme point of K if and only if X is a basic feasible solution
to (17).
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Wyndor Glass (Hillier and Lieberman)

Maximize Z = 3X1 + 5X2
Subject to:

X1
2X2
3X1 + 2X2

12
18

IN IA IA
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Wyndor Glass Example

Extreme Point Solution

Maximize Z = 3X1 + 5X2
Subject to:

X1 4

12
18

2X2
3X1 + 2X2

IN IA IA

Corners:
(0,0) (4,0) (4.3)
(2,6) and (0,6)

) “Z = 3X1 + 5X2 (objective hyperplane)
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s

Extreme Point Solution

No interior solutions in LPs
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Finally, Fig. 2.5 illustrates two possible solutions to the linear program-
ming problem (2.1.18). The linear objective function gives rise to linear
contours, defined by the G, and the linear inequality constraints and non-
negativity constraints give rise to the shaded opportunity set bounded by
lincar segments. Since the objective function is linear 0F/dx = ¢, the
direction of steepest ascent is the same everywhere. For this reason there
cannot be an interior solution: the solution is either at a vertex (V) or along a
bounding face (BF) of the opportunity set.
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Bounding Face Solution




How solve an LP

« Extreme point based approaches
— Simplex

* Or interior point approaches
— Barrier algorithm
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Fundamental Theorem of LP and Simplex

Theorem 2 (LP fundamental theorem in Algebraic form) Given (LP) and (LD)

where A has full row rank m,
1) if there is a feasible solution, there is a basic feasible solution;
i) if there is an optimal solution, there is an optimal basic solution.

The simplex method is to proceed from one BFS (a corner point of the feasible
region) to an adjacent or neighboring one, in such a way as to continuously

improve the value of the objective function.
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Simplex Method

* The idea of the simplex method is to proceed
from one basic feasible solution (that is, one
extreme point) of the constraint set of a problem
in standard form to another, in such a way as to
continually decrease the value of the objective
function until a minimum is reached.

 The Fundamental Theorem of LP assure us that it
Is sufficient to consider
— only basic feasible solutions in our search for an optimal
feasible solution.
- The Simplex method is an efficient method for
moving among basic solutions to the minimum.
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Systems of Equations

If the first m
columns of A are
linearly
independent then
the system can be
reduced to a
canonical form
through multiples
of equations being
added/subtracted
to one another

Canonical Form

Matrix Form

Standard Form

a; X, +a,x, +...+a,yxy =b,

Ay X, + 0y Xyt tayy Xy =,

Ay X, + 04X+t ayyxy =by,

Xy

TV T Vi X e YLK,

T Yo Xmn T Yo X + ¥y, X,

'xm + ym,m+1'xm+l + ym,m+2'xm+2 + ym,n'x

n

Y10
Va0

ym,O

Ax=D>b
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Basic vs.non-Basic &Canonical Form

System of equations in canonical form:

'xl + yl,m+1xm+1 + yl,m+2xm+2 +... + yl,n'xn = yl,O

'x2 + y2,m+1'xm+1 + y2,m+2xm+2 + y2,n'xn = yZ,O

'xm _:i_ ym,nz+1xrz1-_|-l i + ym,m+2xm_+2 . + ym,n'xn_ _:_ ym,O
Corresponding to this canonical representation of the

system, the variables x,, x,, ..., X, are called basic and the
other variables are nonbasic. The corresponding basic
solution is then:

Xi=YV10:X2=Y20, X =Ymo Xms1 =0, ...y X, =0
or in vector form: x = (y,, 0) where y, is m-n-dimensional
and 0 is the n-m-dimensional zero vector.
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Pivoting and Canonical Form

- Or in terms of the corresponding array of coefficients (or
tableau):

1 0 ... TV TV Too TV = Vi
0O 1 .. T Yomer T Yomeo TV = Yao
0O O

0 0 .. 1 4y, tVumeo TV = Ymo

« Use pivoting as a means to change the basis of this system
(in canonical form)

— what is the new canonical form corresponding to the new set of basic
variables?
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Pivoting: entering and leaving

Suppose we have a system of equations in canonical form where we
wish to replace the basic variable x,, 7< p =m by the non-basic variable

Xy M+1sq =n Let g=n
1 0 ... + Vi T Vi e [V = Yio . inOt
P—
Letp=2 0 I .. + Yomer T Yoo +You | = Yoo
0 0
0 0 ceee 1 + ym,m+1 + ym7m+2 + ym,n = ym,O

Can only happen if Yoq is non-zero (y, , in our case);

it is accomplished by:
— dividing row p by y,, to get a unit coefficient for xq in the pth equation,
— and then subtracting suitable multiples of row p from each of the other rows in order to get
a zero coefficient for xq in all other equations.
This transforms
— the gth column of the tableau so that it is zero except in its pth entry (which is unity)
— and does not affect the columns of the other basic variables.
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Example 1. Consider the system in canonical form:

.X‘l + X4 + .rs - "-6 = 5
X3 — X3+ 2x5 —xg=—1.

Let us find the basic solution having basic variables x,, x5, x,. We set up the
coefficient array below:

X X, X3 | Xy Xs Xe
| 0 0| @ I -1 5
0 1 0 2 -3 ] 3
0 0 1|1 2 —1 —1

The circle indicated is our first pivot element and corresponds to the replacement
of x, by x, as a basic variable. After pivoting we obtain the array

_X'l X 2 ,7('3 X 4 XS Xﬁ

1 0 0 1| 1 -1 5
—2 1 o 0|® 3 -7

1 0 1 0| 3 =2 4

and again we have circled the next pivot element indicating our intention to replace
x, by x5. We then obtain

x] .rz .x‘:.‘ vr‘_'l_ ,\’5 .Yﬁ
35 1/5 |0 1 0 [-2/5 18/5
2/5 —1/5 |0 0 1 [-3/5 1/

15 35 L1 0 0 (E::) _1/5

Continuing, there results

X Xy X3 o |xy Xxs Xg
| —1 -2 1 0 0 4
| -2 -3 0 1 0 2
| -3 -5 0 0 1 1

From this last canonical form we obtain the new basic solution

X4 - 4. .\’5 - 2., .X‘é = 1

i. Shanahan (San Francisco)
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Geometric

Algebraic

« Choose (0,0) as initial CPF
solution.

« Optimality test: not
optimal because moving
along either edge
increases Z.

« Iteration 1, step 1: Move
up the edge lying on the

Choose X1and X2 to be
non-basic for initial BFS
(0,0,4,12,18)

Not optimal because
increasing either non-
basic variable increases Z.

Iteration 1, step 1:
Increase X2 while

Z =36 ~\ X2 axis. adjusting other variable
RN - values to satisfy the
N ; > 2.6] system of equations.
N R Maximize Z = 3X1 + 5X2 + 0X3 + 0X4 + 0X5
S o - Subiject to:
Z =1Q - 4,3
Z=5 + X3 = 4
2X2 +X4 = 12
0,0 S - 4:@, 3X1 + 2X2 +X5 = 18
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Geometric Algebraic

« Choose (0,0) as initial CPF + Choose X1and X2 to be

solution. non-basic for initial BFS
i Optlmallty test: not (0505451 2518)
optimal because moving * Not optimal because
along either edge increasing either non-
increases Z. basic variable increases Z.
« Iteration 1, step 1: Move * Iteration 1, step 1: =
< up the edge lying on the Increase X2 while [
Z =36 ~\ X2 axis. adjusting other variable xe]
S~ values to satisfy the o
< s 2.6 2X2 =12 system of equations. O)
3 B AERUIFED o Z = 3X1 + 5Xe
S o AN Subiject to:
Z =10 4,3 Z-3X1-5X2-0X3-0X4-0X5 = 0
7 5. h X3 X1 + X3 = 4
N X4 2X2 + X4 = 12
x5 3X1 + 2X2 + X5 = 18
00 ~.%8 And Xj 20 forj=1, ..., 5
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Simplex Method

The Simplex method is a matrix procedure for solving linear programs in
standard form:

optimize C™x
subject to Ax=b withx20andb 20
where a basic feasible solution x; is known.

The Simplex method is a method that proceeds from one BFS or extreme
point of the feasible region of an LP problem expressed in tableau form to
another neighboring BFS, in such a way as to continually increase (or
decrease) the value of the objective function until optimality is reached.

For maximization programs, the simplex utilizes a tableau in which C_
designates the cost vector associated with the variables X0 X, is the basis

Xo s Co Xo s Co

CT - COTA - COTb COTb _CT COTb

RuSSIR 2009, Petrozavodsk, Russia. Online Advertising © 2009 James G. Shanahan (San Francisco) 243

James.Shanahan_AT_gmail_ DOT_com



Duality

* Provides an alternative/dual LP (introduced in 1940s)
* Dual algorithms

 When both LP problems have feasible vectors, they
have optimal x” and y'. The minimum cost cx* equals
the maximum income y*b. If yb =cx then x and y are
optimal. [Duality Theorem]

« |If x and y are feasible in the primal and dual problems
then yb <cx [weak duality].

* Provides a means to conduct sensitivity analysis
easily

— Resource amounts can be estimates; so maybe want to engage in
a what-if analysis
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Duality

Primal Problem

fl
Maximize L = Z CiXj,
Jj=1

subject to
n
z a;x; = by, fori=1,2,..., m
j=1
and
x; = 0, forj=1,2,...,n
Primal Problem
Maximize Z = cx,
subject to
Ax=Db
and
RuSSIR 20( x=10

Dual Problem
m
Minimize W = z by,
i=1
subject to
m
Z agVi = Cj, forj=1,2,..., n
i=1
and
v =0, fori=1,2,..., m
Dual Problem
Minimize W = vyb,
subject to
YA=c¢
and
y = (. 0) 245
: AT_gmail_DOT_com




TABLE 6.1 Primal and dual problems for the Wyndor Glass Co. example

Primal Problem
in Algebraic Form

Dual Problem
in Algebraic Form

Maximize Z = 3Xx; + 5xy,
subject to
Xy = 4

2}(2 =12
3% + 2x = 18

and X1 =0, X>=0.

Minimize W= 4y, + 12y, + 18y;,
subject to
¥ + 3y; =3
2y + 23 =35

and

Primal Problem
in Matrix Form

Dual Problem
in Matrix Form

CX
Maximize Z=13, 5] 1].
| X2
subject to
1 0 47
X1
0 2 |x ] =12
3 2|72 18

and

4

W= [y1,y2ysl| 12
18

Minimize

subject to

—
o

[vi, Y2, ¥al | O 2 | =[3, 5]
3 2

and

[y1, y2, yal =10, 0O, O].

gmail_DOT_com
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LP Outline

Introduction and some motivating advertising problems
Linear Algebra Basics Review

Fundamental theorem of LP

Matrix-view and the fundamental insight

Duality

Interior point Algorithm

« Transportation Problem

« Applying linear programming to online advertising

« Summary
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Interior Point Solution

 Starts from inside the feasible region

 Moves along a path from the interior to the
boundary

« Large problems can be solved more efficiently
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LP: Algorithms

Simplex. (Dantzig 1947)

— Developed shortly after WWII in response to logistical problems:
used for 1948 Berlin airlift.

— Practical solution method that moves from one extreme point to
neighboring extreme point.

— Finite (exponential) complexity, but no polynomial implementatiol
Known.
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LP: Polynomial Algorithms

Ellipsoid. (Khachian 1979, 1980)
— Solvable in polynomial time: O(n* L) bit operations.
* N = # variables
» L = # bits in input
— Theoretical tour de force.
— Not remotely practical.
-Karmarkar's algorithm. (Karmarkar 1984) O
— O(n35 L).

— Polynomial and reasonably efficient
implementations possible.

Interior point algorithms.
— O(n3L). O

— Competitive with simplex! -9
« will likely dominate on large problems soon
— Extends to even more general problems.
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LP Outline

Introduction and some motivating advertising problems
Linear Algebra Basics Review

Fundamental theorem of LP

Matrix-view and the fundamental insight

Duality

Interior point Algorithm

« Transportation Problem

« Applying linear programming to online advertising

« Summary
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Transportation Problem Description

A transportation problem basically deals
with the problem, which aims to find the
best way to fulfill the demand of n demand
points using the capacities of m supply
points. While trying to find the best way,
generally a variable cost of shipping the
product from one supply point to a
demand point or a similar constraint
should be taken into consideration.

RuSSIR 2009, Petrozavodsk, Russia. Online Advertising © 2009 James G. Shanahan (San Francisco) 252
James.Shanahan_AT_gmail_ DOT_com



Linear Programming Summary

Linear programs are problems that can be
expressed in canonical form:

Maximize XXXX
Subject to f(x)....

Problem 1. Maximize
chf-'jkfdj'j {]}

under the conditions

fl
Y kidij=h; forj=1,....m, (2)
i=I
m
Y dij=1  fori=1,....n, (3)
j=1
dij =0 fori=1,....n, j=1,..., m. (4)
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LP Algorithms Summary

Many algorithms can be used to solve the LP
Simplex algorithm (most popular)

Searches for an optimal solution by moving from one basic
solution to another, along the edges of the feasible polygon,
in direction of cost decrease (Graphically, moves from corner
to corner)

Interior Point Methods (more recent)

Approaches the situation through the interior of the convex
polygon
Affine Scaling

Log Barrier Methods
Primal-dual methods

Bounded regions and corner points
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Scheduling Web Adveristisments

* Predictive Clustering + Linear Programming =
Web Adverstisment Scheduler

— Partition the world of “webpages X users X Ads” as it is
sparse

— Schedule which ads get displayed

 Limited context to show ads

« Many advertisers want their ads shown and are
willing to pay

« Maximize profit (or some proxy for profit) given
limited realestate (contexts) and many ads.
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Sample Problem

Before describing the formalization, we first show an example which helps illustrate the
problem and the need for an LP solution. Assume that the accurately estimated numbers of
page views for combinations of attribute values (afternoon, sports), (afternoon, not sports),
(not afternoon, sports) and (not afternoon, not sports) are 10,000, 10,000, 5,000 and 5,000,
respectively. Also assume that there are three ads for each of which 10,000 impressions
have been promised, and that the accurately estimated click-through rates of these ads for
the combinations of attribute values are as shown in Tuble 1.

Table 1. Case that the local strategy fails.

Time of day Page category Number of page views Click-through rate (%)
ad 1 ad 2 ad 3
afternoon sports 10,000 22 1.1 1.0
afternoon not sports 10,000 2.2 2.1 1.0
not afternoon sports 5.000 22 2.1 2.0
not afternoon not sports 5.000 2.2 2.1 2.0
RuSSIR 2009, Petrozavodsk, Russia. Online Advertising © 2009 James G. Shanahan (San Francisco) 256

James.Shanahan_AT_gmail_ DOT_com



Greedy vs Random Vs LP

Assume that page views for all combinations of attribute values
occur randomly.

The greedy strategy always selects ad 1 for the first 10,000

page views, ad 2 for the second 10,000 page views and ad 3 for
the last 10,000 page views, because (the click-through rate of ad
1) > (the click-through rate of ad 2) > (the click-through rate of
ad 3) holds for all combinations of attribute values.

— As a result, we find that the actual click-through rates for ad 1, ad 2 and ad 3 are
2.2%,1.76 .. . % and 1.33 . . .%,

— the total click-through rate for all ads is 1.76%, which is the same rate as what

would be obtained by the random selection strategy.

According to the optimal display schedule in the LP model,
click-through rate is 2.1%

y f?:;‘;lf:f““ proportion of
proportion o pro . . .
CTRAJ1 | CTRAd2 | CTRAd3 |AvgAdCtr |impressions| portion) | CTRAd2 | impressions | sumproduct(CTRAd2*proportion2)
2.2 1.1 1 1.433333 | 0.333333 | 1.766667 1.1 0.333333 1.766667
2.2 2.1 1 1.766667 | 0.333333 2.1 0.333333
2.2 21 2 2.1 0.166667 21 0.166667
2.2 2.1 2 2.1 0.166667 21 0.166667
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Transportation Problem Description

A transportation problem basically deals
with the problem, which aims to find the
best way to fulfill the demand of n demand
points using the capacities of m supply
points.

While trying to find the best way, generally
a variable cost of shipping the product
from one supply point to a demand point
or a similar constraint should be taken into
consideration.
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Maximize Revenue: Ad Allocation Example

From To
Adl | Ad2 |.Ad; | Ad, Supply
PageViews
PubZone 1 | CTR; | CTR; | CTR; | CTR; 35
PubZone 2 50
PubZone3 | CTR; | CTR;; | CTR;; | CTR;; 15
Demand 45 20 30 5

Contracted

PageViews

Given this Transportation Tableau generate the ad
display schedule (explore R’s Ip_solve)
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Maximize Revenue: Ad Allocation Example

From To
Adl | Ad2 |.Ad; | Ad, Supply
PageViews
PubZone 1 d; d; d; d; 35
PubZone 2 50
PubZone3 d;; d;; d;; d;; 15
Demand 45 20 30 5

Contracted

PageViews

Use LP to generate the Ad display schedule to
maximize my revenue (or rev proxy, .i.e., CTR)
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LP Formulation of Powerco’s Problem

Min Z — 8X11+ 6X12+1 0X13+9X14 +
9X5+12X55+13X5+7 X5, +
1 4X31 + 9X32+1 6X33+5X34

S.T.: X, +Xo,+X3+X,;,<=35 (Supply Constraints)
Xo1+Xoo+ Xos+X,, <= 50
X34+ X3+ X33+ X5, <= 40
X1+ X5+X;5, >= 45 (Demand Constraints)
X0+ X0+ X3, >= 20
X3+ Xo3+ X33 >= 30
Xig+Xoq+ X5, >= 30
Xij >=0 (i=1,2,3; j=1,2,3,4)
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X;;= number of units shipped from supply
point i to demand point j

iI=m J=n

min Z Z CiiXij

i=1 j=1

j=n
s1.) Xy <si(i=12,...,m)

Jj=1

S X2 di(j=12,....n)
i=1

X;i20G=12,....m;j=12,...,n)
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Optimal LP Strategy for Example

 In the above case, according to the optimal
display schedule in the LP model, ad 1 is always
selected for (afternoon, sports), ad 2 for
(afternoon, not sports) and ad 3, otherwise.

« The total click-through rate of this optimal
schedule is 2.1%
— and the actual click-through rates for ad 1, ad 2 and ad 3 are
2.2%, 2.1% and 2.0%, respectively.
- Both greedy and random selection strategy have
a CTR of 1.76%,
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Partition using a predictive clustering

@ Cluster in T (b)  Cluster in D (©  Cluster in D x T
= | £ s
= E] [. . .] = . n = - @
1 | | | | | | | | | | 1 | | | | | 1 | | |
D (description) D (description) D (description)

Figure 2.1: lllustration of predictive modeling (a), clustering (b), and predictive clustering (c).
Figure taken from (Blockeel, 1998).

Partition “webpages X users X Ads” into zones of self-similarity
(using page, user, Ad and CTR-based variables) Vs (page, user, Ad )

[Chickering et al. 2001]
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Maximize Revenue: Ad Allocation Example

From To
Adl | Ad2 |.Ad; | Ad, Supply
PageViews
PubZone 1 d; d; d; d; 35
PubZone 2 50
PubZone3 d;; d;; d;; d;; 15
Demand 45 20 30 5

Contracted

PageViews

Use LP to generate the Ad display schedule to
maximize my revenue (or rev proxy, .i.e., CTR)
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Results at msnbc.com

« 1.5 Million impress/Day, Dec 1998

Table 1: Lifts tor models.

('luster source Lt
Predictive clusters ARYL
Standard clusters 4%
Hand-assigned clusters | 18%

[Chickering et al. 2001]
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LL(#p) = Z Z—(Cz‘j]mg Pclick|Z, j) e\og

ZeP j=I

+ (Dz.j — Cz.j)log(l = P(click|Z, j))). \(\g o\\
where Dz ; is the number of displays (or impressions) for the cluster ad pair %\?
is the number of clicks observed for the same pair. It is well known : ai fgwurd

to veritfy that this is minimized by letting P{cf.rcﬂz j) = Cz, J,,K i m@mmimum
minus log likelihood for a given partition P is given as fn]]mws‘b:&\ so’b‘

\N

j <o — Co

LL(#p) = ZZ (Cz}]ng +(Dz,j—6§\j)1a@69'f LZ”').
ZeP j=1 E g\ e\\

The penalty term, according to AIC, is the mUTEEr of hee (probability) parameters in a
model, and is simply

PT(P) =m|P]|.

We let I(P) denote I({Cz ;/Dz ;j: Z € P, j=1,...,m}). Now, the minimization of
I (6p) is reduced to that of 1(P).

Greedy heuristic to search the best P;
then get the click-through rate [Nakamura and AbE]
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Results for Nakamura, Abe

Click Rate

« Simulation Results
— 32 Ads, 128 serving contexts (reduced to 32 clusters)

0.06 — T T T T T T 0.08 N I B N L
0.05 - U 005 T o
0.04 _;;;'-" - 0.04 | -
ut]
0.03 |- . T po3} -
[%]
random selection — ] random selection —
linear programing ---- linear programing ----
0.02 max click rate ---- ] 0.02 - max click rate ---- N
0.01 = = 0.01 |- =
0 ] 1 | ] ] ] 1 1 | 0 ] 1 ] | | ] 1 | ]
0 10 20 30 40 50 g0 YO &0 90 100 o 10 20 30 40 50 60 YO &80 90 100
Number of Displays (x 10000} Mumber of Displays (x 10000)
(a) Cumulative click rate (b) Instantaneous click rate
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Adapting LP for “important” Advertisers

example, wherein 10,000 impressions each have been promised for two ads. Assume that
the accurately estimated click-through rates (%) of these ads for combination 1 and 2 of
attribute values are as shown in the following table.

ad 1 ad 2
Combination 1 of attribute values 4.0 2.5
Combination 2 of attribute values 2.0 1.0

Then, the optimal solution? is the one that always displays ad 1 for combination | and
ad 2 for combination 2. With this solution, ad 1 will have a high click-through rate of 4.0%
while ad 2 suffers from having a low click-through rate of 1.0. This can be a problem, for
example, 1f the advertiser of ad 2 1s more important than the advertiser of ad 1. This prob-
lem can be dealt with, to some extent, by introducing the “degree of importance’ g; > 0 for
each ad j. The default value of g; 1s 1.0, and a greater value indicates a greater importance
being assigned to ad j. We modify the objective function (1), in the linear programming
formulation, by the following modification, which incorporates the degrees of importance:

"

m
gjci jkidi,j. (5)
2.2

i=1 j=1
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Forward Markets

* Linear Programming
« Quadratic Programming

+ Allocation of Ads to Publisher real estate
— Give ads play in network
« Optimize revenue subject to ....

* Inventory Management
— Contract as many impressions as possible but don’t oversell
« Media Buyer (Arbitrage)
— Frame as a non-linear programming (NLP) problem
— Talks to publisher
— Determine publisher mix for network
« Optimize publisher mix subject to constraints
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Problem 2: Ad allocation problem

« Ad agencies wish to contract as many ad
impressions as possible to earn more Case |
revenue.

« But overselling is dangerous. So they need
to grasp how many sellable impressions
remain.

 In case 1, 8000 sellable impression remain
for afternoon constraint, since at least 2000  , ———— -
views in (afternoon, sports) are needed for (10,000 page views) (10,000 page views)
the contract of sports constraint.

« The calculation of the remaining sellable
impressions for a certain constraint t should
consider contracts for other constraints "
which overlap constraint i. N

« t(how many impressions remain the target
afternoon (as opposed to afternoon only))

Cimpressiony:
U contraet

How many page views can | sell for a publisher zone?
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Ad allocation problem

Should only overlapping constraints be considered?

Case 2

« Case 2 says NO!

* The sellable impressions for
business constraint is 8000, not
10000. The sports-constraint

Business Category  Afternoon Sports Category

CcO nt ract i n d | reCtIy affe ct S it, (10,000 page views)(1 U.ﬂﬂlﬁlge views)( lllll,[ll]e views)

4

though they don’t overlap.

* tis the business constraint (8000
possible pageviews)

L8000
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LP: Intermediate Conclusions

« Linear Programming and Machine learning work
hand in hand to serve ads
— E.g., Advertising.com, Microsoft

- Constraint optimization is critical in ad serving
(especially in forward markets)
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