
Outline: CoAd Lectures

• Introduction

• Online advertising background

• Business models, Campaigns

• Technology and Economics

– Forward Markets 

• Gradient Descent, Operations research, LP, QP

Business,
Gold rush

Tech
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– Auction Theory and Game Theory

– Spot Markets 

• ML, Ad quality, Ranking, Budgeting

• New Directions

• Challenges in online advertising 

• Summary

Tech

Hot Areas

L3

L4

CoAd Lectures

Friday 9/11/2009 10:30-12:00

Saturday 9/12/2009 8:30-10:00

Sunday 9/13/2009 8:30-10:00

Monday 9/14/2009 8:30-10:00



Course philosophy

• Socratic Method (more inspiration than information)

– participation strongly encouraged (please state your name and 
affiliation)

• Highly interactive and adaptable

– Questions welcome!!

• Lectures emphasize intuition, less rigor and detail
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• Lectures emphasize intuition, less rigor and detail

– Build on lectures from other faculty

– Background reading will provide more rigor & detail 

• Action Items

– Read suggested books first (and then papers), read/write
Wikipedia, watch/make YouTube videos, take courses, 
participate in competitions, do internships, network

– Prototype, simulate , publish, participate

– Classic (core) versus trendy (applications)



Ad Network Architecture: Spot Market
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•Historical 
•Site-level
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May also include
�Sales Support Desk (Adv)
�Media Buyer Desk (Pub)
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What is wrong with my ad?

Keyword 1 Consumer behavior

#
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Keyword 2

Keyword 1 Consumer behavior
– seasonality, time-of-day
– demographics: geo, 
age, income, etc.
Advertiser Side
-Ad Creative
-Landing page experience
-Pricing
Publisher Side 
-KW, TP, Position on Page# [Kourosh Gharachorloo, Google, 2007]
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Ad placement
• Which Ads: Which ad creatives, landing page 

should the advertiser use?

• Real Estate: 

– Which pages should the advertiser put ads on?

• Website,  Category, Keyword

– Book pages based on 

• A forward schedule
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• A forward schedule

• A non-guaranteed fashion (specify bid, budget and 
schedule)

• Advertiser can do all this …

– By themselves

– Or through an ad network / ad agency

• Approaches

– Guess, Hire Experts, AB Testing, Fractional Factorial Design

– Take a portfolio approach (see next section)



Optimizing Ads: SEMs

• Search engine marketing (SEM) refers to services 
that determine optimal ad placement. 

– Many SEMs leverage AB Testing and DOE

– SEMs  optimize ad creatives, landing page, keywords

• Efficient Frontier(Keyword Mgt.)

• Offermatica (Ad creative, landing page)

• Optimost (Ad creative, landing page)
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• Optimost (Ad creative, landing page)

• TaguchiNow (Ad creative, landing page)

• …..

• SEOs (Search engine optimization) refers to the 
process of tailoring a web site to optimize its 
(unpaid, or "left side", or "organic") ranking for a 
given set of keywords or phrases. 

– For more details see SEO Literature



A/B Test: Border or not to Border?

• The ad unit has a border around it at present and you want to 
know if removing the border would have any positive effect on 
the performance of the ad. This is where A/B testing comes in.
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[For ads see: http://www.sitetoolcenter.com/google-adsense-optimization/ab-testing.php]

(From 10^3 to 
10^6 in online 
advertising. see 
Statistical power)



Which Ad Creative? Landing page?

• Design of experiments (DOE) (versus AB Testing)

– Which ads are working?

– Is the ad creative working well?

– Is the landing page experience working well?

– What features of creatives/landing pages work?
– Colour? Location? Text Style? Navigation? Action words?

• Fractional factorial designs are experimental 
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• Fractional factorial designs are experimental 
designs consisting of a carefully chosen subset 
(fraction) of the experimental runs of a full 
factorial design. 

– The subset is chosen so as to exploit the sparsity-of-effects 
principle to expose information about the most important 
features of the problem studied, while using a fraction of the 
effort of a full factorial design in terms of experimental runs 
and resources



Dell DOE Study [TaguchiNow.com]

• Target business employees with computers for 
personal use
– Dell selected the Employee Purchase Program (EPP) e-mail 

campaigns as the initial implementation of the Taguchi-based ad 
optimization methodology 

– EPP e-mail advertising campaigns are targeted to 450,000 individuals: 
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– EPP e-mail advertising campaigns are targeted to 450,000 individuals: 
250,000 corporate employees, 150,000 government employees, and 
50,000 professors at schools or universities, all of them users of Dell 
computers at work. 

– The aim of Dell’s EPP e-mail campaigns is to sell computers, software 
and peripherals to these individuals for their personal use leveraging 
the fact that they are already familiar with the brand.

– As an enticing benefit, Dell’s EPP members enjoy discounts of up to 
12% and special promotions like free shipping, product bundles, and 
others.



DOE: Taguchi Testing Array
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7 factors(2 options); 4 factors with 3 options
18 ads out of 10,368 ads are tested

1
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18 out of 10,368 Ads Tested 
Design Matrix
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18 test email ads were sent to 2,000 people each



Send each email ad to multiple groups
RESPONSE DATA

Test # Open Rate Sales
1 4.8% 5.7% $        - $        -
2 5.2% 6.1% $        - $        -
3 7.2% 8.4% $1,638 $1,530 

4 10.5% 11.6% $1,913 $2,215 

5 6.0% 7.3% $1,234 $1,755 
6 5.0% 5.8% $        - $        -

7 12.7% 13.8% $4,919 $4,522 
Each group of 
people and its 
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7 12.7% 13.8% $4,919 $4,522 

8 7.9% 8.8% $2,890 $2,933 
9 7.2% 8.8% $1,296 $1,104 

10 5.5% 6.4% $        - $        -
11 4.9% 5.8% $        - $        -
12 4.2% 5.0% $        - $        -
13 5.5% 6.4% $        - $        -
14 5.7% 6.1% $        - $        -
15 5.2% 5.8% $        - $        -
16 7.4% 8.3% $1,212 $896 
17 6.3% 7.0% $1,076 $1,555 
18 9.9% 10.9% $2,448 $1,998 

people and its 
response (CTR or 
Sales) becomes an 
example. E.g., 10 
groups leads to 180 
examples
Perform regression 
on data



Most Influential Factors

FACTOR OPTIMUM OPTION INFLUENCE
Teaser yes 34%

Product Mix desktop 17%
Promotion primary 16%
Headline seasonal 13%

Configurations none 13%
Subject Line dated 7%
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Subject Line dated 7%
Financing yes or no 0 %

Price high-end of low-end 0 %
S & P Promotion yes or no 0 %

Discount 5% or 10% 0 %
Photo Product or Lifestyle 0 %



• Before 

optimization
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Features that worked well

Select 
multiple ads
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multiple ads



DOE Works
• Click Through Rate increase: 5.2 times

• 7.1 times more sales per e-mail

• Annual sales before optimization: $8,900,000

• Annual sales after optimization: $63,100,000

• Data-based (as opposed to intuitions)!! 

• Crowd-sourcing at its most efficient!!
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• Crowd-sourcing at its most efficient!!

• [TaguchiNow.com]
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Box et al. (1978) “There tends to be a redundancy in [full factorial designs]
– redundancy in terms of an excess number of 

interactions that can be estimated …
Fractional factorial designs exploit this redundancy …” ���� philosophy



Fractional Factorial Design 

• Multiple factors impact the performance of an ad/landing page

• DOE provides a means to quantify the impact of each factor in 
an efficient manner

• In the full factorial design, as the number of factors increases, 
the required number of groups increases exponentially. 

• The fractional factorial design reduces the number of groups 
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• The fractional factorial design reduces the number of groups 
(ads/LPs in the case of advertising) that need to be evaluated
– FFD based on orthogonalization of features (use prescribed recipes: read 

feature combinations and data requirements from tables)

– Used in automobile manufacturing industry (Developed 1960s)

– Linear Regression of CTR variable using the 18 input variables

• Used by Optimost, Offermatica for Ad/LP optimization



Online Advertising
User

Plug and play
Very modular 
(and confusing)
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Ads

Ad Network
Ad Exchange
Yield Manager

Ad 
Agencies Advertisers Publishers



The Advertiser's View

• Some Tools and Pointers: 

– Google's information for advertisers and keyword tool. 

– Yahoo!'s search marketing resources , including the View Bids Tool. 

– Ask's sponsored listing basics. 

– Third-party optimization and management tools and services such 
as Efficient Frontier, Did-It, Atlas 

RuSSIR 2009, Petrozavodsk, Russia.  Online Advertising ©  2009 James G. Shanahan (San Francisco)
James.Shanahan_AT_gmail_DOT_com

125

as Efficient Frontier, Did-It, Atlas 
Search, Bloofusion, SearchRev, and Hitwise. 

– Some keyword bidding robots: Atlas Search, Did-It's Maestro 
Client, BidRank, Dynamic BidMaximizer, Apex Pacific, PPC 
Management, and Search Marketing Tools PPC BidTracker. 

– The Search Engine Marketing Professional Organization.

– "An Adaptive Algorithm for Selecting Profitable Keywords for 
Search-Based Advertising Services. Rusmevichientong, Williamson. 

– Optimal Bidding on Keyword Auctions. Kitts, Leblanc.



Challenges on Advertiser Side

• Ad Network needs to provide services
– Keywords suggestions

– Exact Match vs. Broad match (techniques??)

– Keyword disambiguation (R the statistical package vs. 
the letter R; what does the advertiser mean?)

– Commercial intent of keywords (contextual advertising)
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– Commercial intent of keywords (contextual advertising)

– When to pass on an adcall? Sentiment

– Geo targeting

– Categorization (organize ads by category, limit 
publishers by category; e.g., porn, gambling, religious, 
sports, etc.)

– Bundling Paradox: More segmentation implies expensive 
CPM but smaller less competitive marketplace?



Keyword Suggester
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Outline
• Introduction

• Online advertising background

• Business models

• Creating an online ad campaign

• Technology and Economics

– Advertisers (optimizing ROI thru ads and ad placement)
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– Publishers  (optimizing revenue and consumer satisfaction)

• Forward Markets

• Spot Markets (Auction Systems, Ad Quality, Budgeting) 

• New Directions

• Challenges in online advertising 

• Summary ctoThrottleFaCTRBid

CTRBid

Bid

AdAd

AdAd

Ad

**

*



Traditional Sales/Forward Markets
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Online Advertising Marketplaces

• Manual sale in large batches (1000s); Charge 
advertiser on a CPM basis

– Price negotiated up front ; can be human-intensive

– ~1994 onwards

– Forward Markets/Guaranteed delivery

S
ta

ti
c
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• Self-serve; Charge advertiser on a CPC basis (1997)

• Auction on a per impression basis 

– First-price auction, a la Goto/Overture (1997)

– Second-price auction (GSP); Google (2002) and Yahoo 

– VCG auction (not adapted in practice)

– Spot market

D
y
n

a
m

ic



Ad Network Architecture: Spot Market
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Ad Network Architecture: Forward Market
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Ad Network Architecture: Forward Market
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Maximize Revenue: Ad Allocation Example

From To

Ad1 Ad2 ..Adj….. Adm Supply 

PageViews

PubZone 1 dij dij dij dij 35

PubZone 2 … … … … 50
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PubZone 2 … … … … 50

PubZone3 dij dij dij dij 15

Demand 

Contracted 

PageViews

45 20 30 5

Use LP to generate the Ad display schedule to 
maximize my revenue (or rev proxy, .i.e., CTR)



Ad Networks and Optimisation

• Allocation of Ads to Publisher real estate

– Give ads play in network

• Optimize revenue subject to ….

• Inventory Management

– Contract as many impressions as possible but don’t oversell 

RuSSIR 2009, Petrozavodsk, Russia.  Online Advertising ©  2009 James G. Shanahan (San Francisco)
James.Shanahan_AT_gmail_DOT_com

135

– Contract as many impressions as possible but don’t oversell 

• Media Buyer (Arbitrage) (NLP-problem)

– Talks to publisher

– Determine publisher mix for network

• Optimize publisher mix subject to constraints



Technology

• Infrastructure  (not going to discuss here)

– Commodity components such as Distributed 
systems, Logging Systems, DBMS, OLAP, 
Reporting, Load balancers Firewalls, server farms, 
data-centers, Hadoop, GridSQL, etc.
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data-centers, Hadoop, GridSQL, etc.

• Targeting, Analysis, Yield management

– This is where the money (“^$d+,d+[BbMm]illion”) is 
at!



Outline
• Introduction

• Online advertising background

• Business models

• Creating an online ad campaign

• Technology and Economics

– Advertisers (optimizing ROI thru ads and ad placement)
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– Publishers  (optimizing revenue and consumer satisfaction)

• Forward Markets (Operations Research, segmentation)

• Spot Markets (Auctions, Game Theory, Ad Quality, Budgeting) 

• New Directions

• Challenges in online advertising 

• Summary



Forward Markets
• Gradient Descent

• Linear Programming

• Quadratic Programming

• Allocation of Ads to Publisher real estate

– Give ads play in network

• Optimize revenue subject to ….

• Inventory Management
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• Inventory Management

– Contract as many impressions as possible but don’t oversell 

• Media Buyer (Arbitrage) 

– Frame as a non-linear programming (NLP) problem

– Talks to publisher

– Determine publisher mix for network

• Optimize publisher mix subject to constraints



Gradient Descent

• Common tool in optimisation, machine learning

– Perceptron learning, logistic regression, SVMs, LP, QP, NN, 
etc.

• Gradient descent is a first-order optimization
algorithm. To find a local minimum of a function 
using gradient descent, one takes steps 
proportional to the negative of the gradient (or 
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proportional to the negative of the gradient (or 
the approximate gradient) of the function at the 
current point. 

– If instead one takes steps proportional to the gradient (i.e., 
not negative), one approaches a local maximum of that 
function; the procedure is then known as gradient ascent.

• Basic gradient descent (and other variations) 
works well…..

[Wikipedia]



A real-valued function decreases fast..
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[Wikipedia]



Gradient Descent Example
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[Read Linear and Nonlinear Programming 
by  David G. Luenberger, Yinyu Ye]

[WikiPedia]



Gradient Descent Algorithm 
#python code
# find a local minimum of the function f(x)=x4-3x3+2 , with derivative f'(x)=4x3-9x2. 
# From calculation, we expect that the local minimum occurs at x=9/4# From calculation, we expect that the local minimum occurs at x=9/4# From calculation, we expect that the local minimum occurs at x=9/4# From calculation, we expect that the local minimum occurs at x=9/4
xOldxOldxOldxOld = 0= 0= 0= 0
xNewxNewxNewxNew = 6 = 6 = 6 = 6 
# The algorithm starts at # The algorithm starts at # The algorithm starts at # The algorithm starts at 
x=6x=6x=6x=6
epsepsepseps = 0.01    # step size= 0.01    # step size= 0.01    # step size= 0.01    # step size
precision = 0.00001 precision = 0.00001 precision = 0.00001 precision = 0.00001 
def    def    def    def    f_primef_primef_primef_prime(x):    (x):    (x):    (x):    

Homework:find a local minimum of the function 
f(x)=6x5-8x2+6 using your favourite programming 
language! Plot the function and comment on 
boundedness.
Be careful about initial value? Why?
Prove that the candidate optimum, x*, is a maximum 
or minimum using f’’(x*); recall if f’’(x*)< 0 then local 
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def    def    def    def    f_primef_primef_primef_prime(x):    (x):    (x):    (x):    
return 4 * x**3 return 4 * x**3 return 4 * x**3 return 4 * x**3 ---- 9 * x**2 9 * x**2 9 * x**2 9 * x**2 

while abs(while abs(while abs(while abs(xNewxNewxNewxNew ---- xOldxOldxOldxOld) > precision:    ) > precision:    ) > precision:    ) > precision:    
xOldxOldxOldxOld = = = = xNewxNewxNewxNew
xNewxNewxNewxNew = = = = xNewxNewxNewxNew ---- epsepsepseps * * * * f_primef_primef_primef_prime((((xNewxNewxNewxNew))))

print "Local minimum occurs at", print "Local minimum occurs at", print "Local minimum occurs at", print "Local minimum occurs at", xNewxNewxNewxNew
With this precision, the algorithm converges to a local minimum of 2.24996 in 70 iterations.
A more robust implementation of the algorithm would also check whether the function value 
indeed decreases at every iteration and would make the step size smaller otherwise. One 
can also use an adaptive step size which may make the algorithm converge faster.

or minimum using f’’(x*); recall if f’’(x*)< 0 then local 
max, else f’’(x*)> 0 then local min
Optional Homework: Is the function f(x)=6x5-8x2+6 
a convex or concave function? Recall that if f’’(x) < 0 

forall x then f is concave; and if f’’(x) > 0 then f(x) is 
convex.  Note: f’’(x) is the second derivative of f

[http://en.wikipedia.org/wiki/Gradient_descent] 



Linear Discriminant Model
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Geometry: Linear Separators
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x1

Represent a hyperplane, H,  in terms of vector W, and scalar b
W determines the orientation of the hyperplane/discriminant plane
b denotes the offset (Perpendicular distance) from the plane to the origin

bXWr
T +=

Perpendicular distance from 
point X to a hyperplane



Learning Linear Discriminants

Primal learning  (e.g., perceptron) 
involves learning weight values 
associated with term/feature.

Wgt Vector w0 w1 … …. wn

W

x1

x2

-b

R+

R-x

x

o o

o

o

x

x
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Instance\Attr x0 x1 x2 … xn y

1 1 3 0 .. 7 -1

2 1 +1

… … … … … … …

L 1 0 4 ... 8 -1



Augmented Representations
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 nn ww  nn xx

( ) ( )bXWsignXClass += ,  

( ) ( )XWsignXClass ,  =

Classification rule simplifies



Learning Linear Separators 

• Linear discriminant functions have a variety 
of pleasant analytical and pedagogical 
properties!!

• Formulate the learning of a linear discriminant 
function as a problem of minimizing a 
criterion function
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criterion function
– E.g., training error

• Learning corresponds to finding a weight 
vector
– A weight vector is can be thought of as a point in 

weight space (version space). 

– Each training example places a constraint on the 
possible location of a solution vector (feasible region)



Version Space

• A version space in concept learning or induction
is the subset of all hypotheses that are consistent
with the observed training examples [Mitchell 
1997]. 

• This set contains all hypotheses that have not 
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• This set contains all hypotheses that have not 
been eliminated as a result of being in conflict 
with observed data.



Positive Class Version Space
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E.g. x1 x2 y

1 3 2 +1x2
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w1

[3,2] is an example for the +Class; 
so should yield positive value 
when substituted in to the 
equation of the hyperplane
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[1.7, 3]

[1,-3]
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Class H+



Positive Class Version Space
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Positive Class Version Space
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Negative Class Version Space

x2

INPUT SPACE WEIGHT SPACE

w

2

Good
Weight Vectors

RuSSIR 2009, Petrozavodsk, Russia.  Online Advertising ©  2009 James G. Shanahan (San Francisco)
James.Shanahan_AT_gmail_DOT_com

152
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Pos/Neg Class Version Space
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Pos/Neg Class Version Space
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Label Normalization
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X1

-
-

X1

-
-

NOTE: All examples fall 
on the positive side of 
the plane



Version Space with addal. constraints

Get every example on the 
right side of the tracks

Get every example WELL INSIDE 
the right side of the tracks

w2 w1

X1 X1
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w1 w1

iyXW ii ∀>≥  0, γiyXW ii ∀≥  0,

X2

X3

X1

X2

X3

[Adapted from Duda, Hart, Stork, 2001]



Weight Vector and Solution Region

• The hyperplane weight vector, W,  can be thought 
of as specifying a point in the weight/version 
space

• Each example places a constraint on W
– (<W, Xi>)yi > 0

• The solution hyperplane must be on the positive 
side of each data induced hyperplane
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side of each data induced hyperplane
• Solution region = the intersection of L half-

spaces
• Impose additional constraints 

– Find solution that is in the middle of the solution region (i.e., 
that is insulated from data anomalies)

– Maximize the minimum distance from the training examples 
to the separating hyperplane

• (<W, Xi>)yi > γ

– γ is known as the classifier margin



Learning Algorithms in Version Space

SVM

Perceptron

Bayes Point
Machine 
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SVMs find the center of the largest radius hypersphere whose center 
can be placed in version space and whose surface does not intersect 
with the hyperplanes corresponding to the labeled instances. 

Perceptron



Learning a Weight Vector 

• Q: Find a solution to a set of linear inequalities ((<W, Xi>)yi
≥ 0)

– Each example acts as a constraint
– (<W, Xi>)yi ≥ 0

• A: Define an objective/criteria function
– That is minimized if W is a solution vector
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– That is minimized if W is a solution vector
– Simple objective function J(W) is the number of 

mistakes made by W 
• (when 0 then W is a solution).

– Minimize this scalar function J(W) using gradient 
descent procedures



Gradient Descent

• To find a solution to the set of linear 
inequalities 〈〈〈〈W, Xi〉〉〉〉 yi >  0;

• We define a criterion function J(W) that is 
minimized if  W is a solution.

• This kind of problem can be solved by 
gradient descent.
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• This kind of problem can be solved by 
gradient descent.

• General approach
– Start with some vector W(1).
– Generate then W(2) by taking a small step in the 

direction of the steepest descent, i.e., “-∇J (W(k))”



Objective Functions

• Consider the problem of finding a weight vector 
that satisfies all the training data

– (<W, Xi>)yi > 0

• An obvious choice of objective

– Let J(W, X1,…XL) be the number of examples that are 
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– Let J(W, X1,…XL) be the number of examples that are 
misclassified 

∑
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=
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L
yyXWJ



Objective Function: Number of Errors

E.g. x1 x2 y

1 .. .. ..

2 .. .. ..

3 .. .. ..

J(W, X1
L) = Number of Errors

3 examples (label 

J(W, X1
L)

Error surface
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X1y1

X2y2

X3y3

w2

w1

3 examples (label 
normalized, i.e., Xy)
⇒Legal region 
corresponds to the

intersection of 
positive half-spaces  
=> Max J(W, X1

L) =3

However, J(W, X1
L) is piecewise constant

=> Very poor candidate for gradient search [Adapted from Duda, 
Hart, Stork, 2001]



Perceptron Objective Function

• Given linear Constraints (<W, Xi>)yi > 0

• J(W, X1,…XL) or J(W, X1
L) 

– The number of examples that are misclassified is not continuous

• However, JP(W, X1
L), the Perceptron Objective 

Function, is piecewise continuous

∑
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Function, is piecewise continuous

• Solution Region

– If no examples are misclassified then Jp is zero

– Jp is zero when W is in the solution region

• Intuitively, Jp corresponds to sum of the margins 
(negative) of misclassified examples
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Objective Function: Perceptron

E.g. x1 x2 y

1 .. .. ..

2 .. .. ..

3 .. .. ..

Jp(W, X1
L)

JP(W, X1
L)
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Error surface
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X1

X2

X3

w2

w1

However, Jp(W, X1
L) is piecewise linear

=> Acceptable for gradient search

X1y1

X2y2

X3y3

[Adapted from Duda, 
Hart, Stork, 2001]



Alternative Objective Function

1. J(W, X1,…XL) or J(W, X1
L) be the number of examples that are 

misclassified (Non continuous)

2. JP(W, X1
L), Perceptron Objective 
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3. Jq(W, X1
L), Squared/quadratic Error (too smooth; converge to 

boundary point; dominated by longest example vectors)

4. Jr(W, X1
L), Scaled Margin-based
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Different Objective Functions
Number misclassified examples Perceptron Objective
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Source: [DHS, 2001]

Squared/quadratic Error Scaled Margin-based



Perceptron using Gradient Descent

• General Update Rule
– W(k+1)=W(k) - η∇η∇η∇η∇J (W(k))
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P yXWXWJ Perceptron Objective Function

BATCH Update Rule

RuSSIR 2009, Petrozavodsk, Russia.  Online Advertising ©  2009 James G. Shanahan (San Francisco)
James.Shanahan_AT_gmail_DOT_com

167

∑
<

−=
∂

∂
=∇

}0,|{

1 )(
)),((

iii XWyX

ii

L

P
P yX

W

XWJ
J

∑
<

+=+
}0,|{

)()()()1(
iii XWyX

ii yXkkWKW η

Gradient of Perc. Objective Func.

Perceptron BATCH Update Rule

Intuitively, drag weight vector closer to the misclassified examples



Perceptron using Gradient Descent

• General Update Rule
– W(k+1)=W(k) - η∇η∇η∇η∇J (W(k))

∑
<

−=
}0,|{

1 )(),(
iii XWyX

ii

TL

P yXWXWJ Perceptron Objective Function

Single Update Rule
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Intuitively, drag weight vector closer to the misclassified example



Remember: Class Version Space
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Drag the weight vector into this zone, 
which surrounds the training example

W[k]



Perceptron Algorithm

• Given Training data S where each example i is of the 
form (xi,1,…, xi,n,yi), and a learning rate ηηηη

• Set Wo to zeros; k=0;

• Repeat

– For i = 1 to |Train| do
If (y (<W X >+b )) ≤ 0 then     // y ≠Sgn (<W X >+b ) MISTAKE

Single-sample Primal Form
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If (yi(<Wk, Xi>+bk)) ≤ 0 then     // yi≠Sgn (<WkXi>+bk) MISTAKE

Wk+1= Wk+ η yi Xi                       // Update weights with example i

k= k + 1 // Update number of mistakes

End-If

– End-For

• Until no mistakes are made

• Return k, W



Perceptron Update Example

JP(W, X1
3)
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X1y1

X2y2

X3y3

w2

w1

Adapted from: [DHS, 2001]

Start with W = [0, 0]
Update Sequence: 

X2, X3, X1, X3

Updating with X3y3 and X2y1 

cause overshooting



Perceptron Learning: Text Example 
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[Source: http://www.cs.cornell.edu/Courses/CS678/2003sp/slides/perceptron_4up.pdf]



plotLinearModel=function(X, w,b){
margins=classify.linear(X, w, b)
labels=ifelse(margins>0,1,-1)
plot(X,pch=ifelse(margins>0,"+","-"),xlim=c(-1,1),ylim=c(-1,1))
abline(0.5,1)
points(c(0,0),c(0,0),pch=19)
lines(c(0,-0.25),c(0,0.25),lty=2)
arrows(-0.3,0.2,-0.4,0.3)
text(-0.45,0.35,"W /* weight vector */")

#points(rnorm(200), rnorm(200), col = "red")
grid()
return(cbind(X, labels))

}
classify.linear = function(x,w,b) {

distance.from.plane = function(z,w,b) { sum(z*w) + b }
distances = apply(x, 1, distance.from.plane,w=w, b=b)
return(ifelse(distances < 0, -1, +1))

}

classify.linear.1ex = function(x,w,b) {
distances =sum(x*w) + b 
return(ifelse(distances < 0, -1, +1))

}
perceptron = function(x, y, learning.rate=1) {

w = numeric(ncol(x)) # Initialize the parameters
b = 0
k = 0 # Keep track of how many mistakes we make
R = max(euclidean.norm(x))
#browser()
made.mistake = TRUE # Initialized so we enter the while loop

Perceptron learning
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made.mistake = TRUE # Initialized so we enter the while loop

while (made.mistake) {
made.mistake=FALSE # Presume that everything’s OK
for (i in 1:nrow(x)) {

if (y[i] != classify.linear.1ex(x[i,],w,b)) {
#browser();
w <- w + learning.rate * y[i]*x[i,]
b <- b + learning.rate * y[i]*R^2
k <- k+1
made.mistake=TRUE # Doesn’t matter if already set to TRUE previously

slope=-1*(w[1]/w[2]);
b=-1*b/w[2]
#print(paste("slope is ",slope,"b is", b, sep=" "))
#abline(b, slope, col="red",lw=1)

}

}

}
slope=-1*(w[1]/w[2]);
b=-1*b/w[2]
print(paste("slope is ",slope,"b is", b, sep=" "))
abline(b, slope, col="blue",lw=3)

return(w=w,b=b,mistakes.made=k)
}
euclidean.norm=function(X) {

euclidean.norm1 = function(x) {sqrt(sum(x * x))}
enorms = apply(X, 1, euclidean.norm1 )
return(enorms)

}

## Driver code
x1=runif(5, -1, 1);  x2=runif(5, -1, 1)
#slope =1;
#y= slope*x1+b

X=cbind(x1=x1,x2=x2);  #x=runif(10, -1,1)

b=-0.5;   #y= 1*x+b

w=c(-1,1)
par(mfrow=c(1,1)) ## sets up screen for four plots

#trainingDataOld=trainingData



Gradient Descent for Ordinary Least Squares

∑
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Error surface; each point 
corresponds to a different 
linear model (hypothesis). The 
vertical axis indicates the 
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weight1

weight2

OLS with this objective has no local minima (convex as the Hessian, n by n 
matrix of second derivatives, of the objective function is positive definite); 
in this case n=2 variables.
Iterative versus closed form solution

vertical axis indicates the 
squared error for the training 
dataset WRT that weight 
vector. 
Q: Will this surface change for 
different datasets?



OLS using Gradient Descent

• General Update Rule
– W(k+1)=W(k) - η∇η∇η∇η∇J (W(k))

OLS Objective Function

BATCH Update Rule
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update the  parameters of 
the model, corresponding 
to the sum of the gradients 
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∑
=

−=
∂

∂
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m

i

iii

T
m
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XWJ
J

1

1 )(
)),((

i

m

i

ii XyWXkkWKW ∑
=

−+=+
1

)()()()1( η

Gradient of OLS 
Objective Func.

OLS BATCH Update Rule

Intuitively, drag weight vector closer to the misclassified examples

to the sum of the gradients 
caused by each training 
example (one sweep)



OLS using Gradient Descent

• General Update Rule
– W(k+1)=W(k) - η∇η∇η∇η∇J (W(k))

Stochastic Gradient Descent
Online/Single Update Rule

OLS Objective Function∑
=

−=
m

i

ii

TL

q yXWXWJ
1

2

1 )(),(

True gradient is approximated the 
gradient of the cost function only 
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Intuitively, drag weight vector closer to the misclassified example

iii XyWXkkWkW ))(()()1( −+=+ η OLS Single Update Rule

gradient of the cost function only 
evaluated at  one example; adjust 
parameters  proportional to this approx. 
gradient. This can be much better for 
large datasets.
E.g., Stochastic Gradient Decision 
Trees; perceptron



Gradient Vector &
Tangent Plane

Calculate gradient vector by evaluating 
partial derivates at tangential point
Gradient vector at (1, 1) is (4, 2); 
f’(1,1) = (4,2)
f(1,1)=3

Tangent plane at (1, 1, 3) 
with gradient (4,2)  
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(1, 1) 

(4,2) Gradient vector 

[Adapted from 
Multivariable Calculus: 
Concepts and Contexts, 
James Stewart]



Gradient as a vector field

• Gradient (f’(x)) of 

(corresponds to slope in a single variable function)

At each point calculate the tangent 
plane (this plane approximates the 
surface at the point and in that 
point’s neighbourhood). Recall 
Taylors Series?
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• Gradient (f’(x)) of 
the quadratic form. 
For every point x, 
the gradient points 
in the direction of 
steepest increase 
f(x), and is 
orthogonal to the 
contour lines.



Gradient is orthogonal to contour
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Gradient (f’(x)) of the quadratic form for every point 
x, the gradient points in the direction of steepest 
increase f(x), and is orthogonal to the contour lines.

Contour plot of objective function f’x)), error 
function in our case. Each ellipsoidal curve has a 
constant error rate. For every point x, the gradient 
points in the direction of steepest increase of f(x), 
and is orthogonal to the contour lines.



Ordinary Least Squares Algorithm

• Given Training data S where each example i is of the 
form (xi,1,…, xi,n,yi), and a learning rate ηηηη

• Set Wo to zeros; k=0;

• Repeat

– For i = 1 to |Train| do
W = W + η (<W X > -y )X

Single-sample Primal Form
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Wk+1= Wk+ η (<Wk, Xi > -yi )Xi 

– End-For

• Until convergence

• Return W

Iterative, gradient descent based algorithm (as opposed to other 
versions, such as closed form version, quadratic programming 
version, maximum likelihood. What could they look like?)



Exercise: predict height from shoe sizes

• Create a small dataset

– Collect height (in centimeters) and shoe sizes in 
European sizes (e.g., I am 184 cm, with a shoe 
size of 46).

• Train a OLS model using gradient descent

Homework
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• Train a OLS model using gradient descent

– Train OLS model using the iterative gradient 
descent algorithm

– Plot model after each iteration

– Compare to model learnt using lm(.) (in R).

• Bonus: plot gradient, error contours, and 
error surfaces for bonus credits!



Closed form solution to OLS
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[Friedman et al. 2001]



Gradient Descent: other tidbits

• Gradient descent can also be used to solve a system of 
nonlinear equations. 

• Below is an example that shows how to use the gradient 
descent to solve for three unknown variables, x1, x2, and 
x3.
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• A more powerful algorithm is given by the BFGS method
which consists in calculating on every step a matrix by 
which the gradient vector is multiplied to go into a 
"better" direction, combined with a more sophisticated 
line search algorithm, to find the "best" value of γ.

[WikiPedia]



Newton-Raphson Method
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[Wikipedia]



Univariate Newton-Raphson Example 

Given the slope f’(x0), and a point x0, 
calculate the tangent line (at approximates 
f in the neighbourhood of xo

Find roots of 
equations that are 
differentiable. 
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[Adapted from 
http://plus.maths.org/issue9/puzzle/solution.html]



Multivariate Newton’s Method
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[http://www.stat.cmu.edu/~cshalizi/350/2008/lectures
29/lecture-29.pdf]
[Hand, Manilla, Smith, Data Mining, Section 8.3]

In R, have a look at 
?optim #method=BFGS



Limitations of Newton’s Method
• Step size can a guessing game in Newton’s method

• There are other methods for finding minimums besides 
Newton’s method 

– Such as gradient descent, conjugate gradient or variations of the 
Gauss-Newton method avoid this guessing 

• Applications

RuSSIR 2009, Petrozavodsk, Russia.  Online Advertising ©  2009 James G. Shanahan (San Francisco)
James.Shanahan_AT_gmail_DOT_com

187

• Applications

– Finding minimum or maximum of a function (e.g., linear regression)

– Neural Networks

– Linear Programming, quadratic programming.

– Finding maximum likelihood estimates

• Unlike EM, such methods typically require the evaluation of first 
and/or second derivatives of the likelihood function.

• E.g.,  Logistic Regression In R, have a look at optim()
type  ?optim #method=BFGS



Newton < Gradient Descent < Conjugate

• Newton’s method requires evaluation, storage 
and inversion of matrix; computationally 
complex.

• Gradient descent typically converges slowly.

• Conjugate direction methods is intermediate b/w 
the above two, which has proved to be extremely 
effective in dealing with general objective 
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effective in dealing with general objective 
functions.

• A comparison of the convergence of gradient 
descent with optimal step size (in green) and 
conjugate gradient (in red) for minimizing a 
quadratic function associated with a given linear 
system. Conjugate gradient, assuming exact 
arithmetics, converges in at most n steps where 
n is the size of the matrix of the system (here 
n=2).



Forward Markets
• Gradient Descent

• Linear Programming

• Quadratic Programming

• Allocation of Ads to Publisher real estate

– Give ads play in network

• Optimize revenue subject to ….

• Inventory Management
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• Inventory Management

– Contract as many impressions as possible but don’t oversell 

• Media Buyer (Arbitrage) 

– Frame as a non-linear programming (NLP) problem

– Talks to publisher

– Determine publisher mix for network

• Optimize publisher mix subject to constraints



Linear Programming (LP)

Linear programming is a mathematical technique 
that enables a decision maker to arrive at the 
optimal solution to problems involving the 
allocation of scarce resources.

Typically, many economic and technical problems 
involve maximization or minimization of a certain 
objective subject to some restrictions.

RuSSIR 2009, Petrozavodsk, Russia.  Online Advertising ©  2009 James G. Shanahan (San Francisco)
James.Shanahan_AT_gmail_DOT_com

190

objective subject to some restrictions.

LP is a technique for optimization of a linear 
objective function, subject to linear equality and 
linear inequality constraints



LP Outline

• Introduction and some motivating advertising problems

• Linear Algebra Basics Review

• Fundamental theorem of LP

• Matrix-view and the fundamental insight

• Duality
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• Duality

• Interior point Algorithm

• Transportation Problem

• Applying linear programming to online advertising

• Summary



Ad Network Architecture:Forward Markets

Ad
Index

Crawler

Features
•Index
•TF/IDF
•(Webgraph)
•Anchor Text
•Classes
•Page Quality
•....
•Historical 

MLR
Ranker

Query Proc

ML
AB Test

DashBoard

Landing
Pages

Analytics 

Behavioral

WebPage
Index

From To

Ad1 Ad2 ..Adj….. Adm Supply 

PageViews

PubZone 1 dij dij dij dij 35

PubZone 2 … … … … 50

PubZone3 dij dij dij dij 15
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•Historical 
•Site-level

WebPage
SERP
WWW
Email

…..

Ads,LPs
Logs

Ratings

ADashBoard
Ad upload/
SelfServe

Creatives
Constraints

Advertisers

Users

Publishers

Index

Generate
AdCode

Crawl+
(Index, Feat.)

PDashBoard

Yield Management
Ad Network

Demand 

Contracted 

PageViews

45 20 30 5



Ad Networks and Optimisation

• Allocation of Ads to Publisher real estate

– Give ads play in network

• Optimize revenue subject to ….

• Inventory Management

– Contract as many impressions as possible but don’t oversell 
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– Contract as many impressions as possible but don’t oversell 

• Media Buyer (Arbitrage) (NLP-problem)

– Talks to publisher

– Determine publisher mix for network

• Optimize publisher mix subject to constraints



History of LP
• The founders of the subject are Leonid Kantorovich, 

a Russian mathematician who developed linear 
programming problems in 1939, George B. Dantzig, 
who published the simplex method in 1947, John von 
Neumann, who developed the theory of the duality in 
the same year. 

• The linear programming problem was first shown to 

1939

1947
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• The linear programming problem was first shown to 
be solvable in polynomial time by Leonid 
Khachiyan in 1979, but a larger theoretical and 
practical breakthrough in the field came in 1984 
when Narendra Karmarkar introduced a new interior 
point method for solving linear programming 
problems.

1984



What is Linear Programming
• Linear programming (LP) = 

– Linear Algebra + inequalities + optimization (minimize or 
maximize)

• LP is a technique for optimization of a linear 
objective function, subject to linear equality and 
linear inequality constraints. 

– Informally, linear programming determines the way to 
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– Informally, linear programming determines the way to 
achieve the best outcome (such as maximum profit or lowest 
cost) in a given mathematical model and given some list of 
requirements represented as linear equations.

– More formally, given a polytope (for example, a polygon or a 
polyhedron), and a real-valued affine function

– defined on this polytope, a linear programming method will 
find a point in the polytope where this function has the 
smallest (or largest) value. 



Types of LP descriptions
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21

21

max

)(,0

xx

freexx

+

≤

To deal with different types of objectives and 
constraints we convert each linear program to 
standard form.



Standard Form
(according to Hillier and Lieberman)

bxaxaxa

bxaxaxa

xcxcxc

NN

NN

NN

...

...

...

subject to

...max
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Njx

bxaxaxa

j

MNMNMM

..1,0
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...

2211

=≥

≤+++

0

subject to
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≥

≤

′

x

bAx

xc
Concise version:

A is an m by n matrix: n variables, m constraints



Converting into Augmented Form

• Slack/surplus variables

• Replacing ‘free’ variables

• Minimization vs maximization

• See Luenburger (page 11,12 etc)
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• See Luenburger (page 11,12 etc)



Standard Form to Augmented Form
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Farmer Example

• Suppose that a farmer has a piece of farm land, 
say A square kilometers large, to be planted with 
either wheat or barley or some combination of the 
two. 

• The farmer has a limited permissible amount F of 
fertilizer and P of insecticide which can be used, 
each of which is required in different amounts per 
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each of which is required in different amounts per 
unit area for wheat (F1, P1) and barley (F2, P2). 

• Let S1 be the selling price of wheat, and S2 the 
price of barley. If we denote the area planted with 
wheat and barley with x1 and x2 respectively, 
then the optimal number of square kilometers to 
plant with wheat vs. barley can be expressed as a 
linear programming problem



Farmer Example: LP

maximize S1x1 + S2x2 ( maximize the revenue – this is 

the “objective function”)

subject to x1 +x2 < A (limit on total area)

F1x1 + F2x2 < F (limit on fertilizer)

P1x2 + P2x2 < P (limit on insecticide)
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P1x2 + P2x2 < P (limit on insecticide)

x1 >= 0, x2 > 0 (cannot plant a negative area)

which in matrix form becomes

maximize

subject to  



Farmer Example: Augmented Form

• Linear programming problems must be converted 
into augmented form before being solved by the 
simplex algorithm. This form introduces non-
negative slack variables to replace non-equalities 
with equalities in the constraints. The problem 
can then be written on the following form:
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Maximize Z in:



Farmer Example: Augmented Form

The example 1 above becomes as follows when converted 
Into augmented form:

maximize S1x1 + S2x2 (objective function)

subject to x1 +x2 + x3 = A (augmented constraint)

F1x1 + F2x2 < F + x4 = F (augmented constraint)

P1x2 + P2x2 + x5 = P (augmented constraint)
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where x3,x4,x5 are (non-negative) slack variables.

Which in matrix form becomes:

Maximize Z in:

ProblemVars Slacks

objective



Outline

• Introduction

• Linear Programming

• Graphic Example

• Matrix-view and the fundamental insight

• Theory and proofs??

• Simplex and Dual Methods
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• Simplex and Dual Methods

– Standard Form

– Simplex and Dual

– Proofs

• Interior point Algorithm

• Transportation Problem

• Applying linear programming to online 
advertising [Nakamura]

• Summary



Linear Independent.
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http://books.google.com/books?id=Gv4pCV
yoUVYC&printsec=frontcover&dq=gilbert+s
trang+basis&ei=k6GdSeecFJLOlQTekfSjAw
#PPA158,M1



Background on Matrices

Ax=b
A-1Ax=A-1b

Solve this system of equations through 
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A-1Ax=A-1b
Ix=A-1b

Solve this system of equations through 
1. Gaussian elimination or 
2. Using matrix inverses



Basis of 
Vector Space

bAx

bAx

1

for  then invertible isA when 

−=

=

I.e., b can expressed as a unique linear 
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V1=(1,0)T

V2=(0,1)T
Standard basis

V1

V2

(1,1) 









=








+








1

1

1

0
1

0

1
1

I.e., b can expressed as a unique linear 
combination of the basis vectors



Invert Matrix and Basis
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Non-invertible matrices
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Find a basis for for b in terms of 4 cols

Reduced row echelon form
So can read off the soln
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B-1A       x  =  B-1b



Basic Solution (to a system of eqns.)

• Given Ax=b A system of equations (8)
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• Given Ax=b A system of equations (8)

• Definition. Given the set of m simultaneous linear equations in n
unknowns (8), let B (denoted AB) be any nonsingular m×m
submatrix made up of columns of A.

• Then, if all n−m components of x not associated with columns of 
B are set equal to zero, the solution to the resulting set of 
equations is said to be a basic solution to (8) with respect to the 
basis B. The components of x associated with columns of B are 
called basic variables. The remaining n-r variables are non-basic.

• Assume that the first m columns of A make up B (denoted as AB)



Basic Solution (to a system of eqns.)

• Given Ax=b A system of equations (8)
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• Given Ax=b A system of equations (8)

• Definition. Given the set of m simultaneous linear equations in n
unknowns (8), let B be any nonsingular m×m submatrix made up 
of columns of A.

• In the above definition we refer to B as a basis, since B consists 
of m linearly independent columns that can be regarded as a 
basis for the space Rm. The basic solution corresponds to an 
expression for the vector b as a linear combination of these basis 
vectors. Assume that the first m columns of A make up B
(denoted as AB)



Full Rank Assumption

• Ax=b A system of equations (8)
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Degenerate Basic Solution

• The basic variables in a basic solution (i.e., in x) 
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0
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• The basic variables in a basic solution (i.e., in x) 
are not necessarily all nonzero. This is noted by 
the following definition.

• If one or more of the basic variables in a basic 
solution has value zero, that solution is said to be 
a degenerate basic solution.



Basic Feasible Solution
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Ax=b

x≥0                      (eqn. 10)

• A vector x satisfying (10) is said to be feasible for these 
constraints. A feasible solution to the constraints (10) 
that is also basic is said to be a basic feasible solution; 

• if this solution is also a degenerate basic solution, it is 
called a degenerate basic feasible solution.



An Example with 35 (possible) basis

7..1,0

4

5

2

3

731

631

521

421

=≥

=−+

=++

=−+

=++

jx

xxx

xxx

xxx

xxx

j

RuSSIR 2009, Petrozavodsk, Russia.  Online Advertising ©  2009 James G. Shanahan (San Francisco)
James.Shanahan_AT_gmail_DOT_com

216



35 possible basis
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…continued over the next couple of slides



Category 1: 8 Basic Feasible Solutions
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Max



Category 2: 13 Basic Infeasible Solutions
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Category 3: 14 Not Basic Solutions
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Linear Program

bxaxaxa

bxaxaxa

bxaxaxa

xcxcxc

NN

NN

NN

...

...

...

...

subject to

...max

22222121

11212111

2211

≤+++

≤+++

≤+++

+++
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Njx

bxaxaxa

j

MNMNMM

..1,0

...2211

=≥

≤+++

0

subject to

max

≥

≤

′

x

bAx

xc
Concise version:

A is an m by n matrix: n variables, m constraints



Linear Programming in Standard Form
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Reduction to Standard Form
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An Example with 35 (possible) bases
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An Example with 35 (possible) bases
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Reduce Search to Basic Solutions 

Optimal feasible solution⊂⊂⊂⊂ feasible solutions ⊂⊂⊂⊂ basic solutions

RuSSIR 2009, Petrozavodsk, Russia.  Online Advertising ©  2009 James G. Shanahan (San Francisco)
James.Shanahan_AT_gmail_DOT_com

226

n variables (including slacks)
m Constraints



LP:  Geometry

•Geometry.
– Forms an n-dimensional

polyhedron/polytope.

njx

mibxa

xc

j

i

n

j
jij

n

j
jj

≤≤≤≤≤≤≤≤≥≥≥≥

≤≤≤≤≤≤≤≤≤≤≤≤∑∑∑∑
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====

====

10

1t. s.

max(P)

1

1

y
yExtreme 
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– Convex: if y and z are feasible solutions, then so is ½y + ½z.
– Extreme point: feasible solution x that can't be written as ½y + 

½z for any two distinct feasible solutions y and z.

z

z

y

Convex Not convex

Extreme 
points



Connecting Algebra with Geometry
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Wyndor Glass (Hillier and Lieberman)

Maximize Z = 3X1 + 5X2
Subject to:

X1 ≤    4
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2X2     ≤  12  
3X1 + 2X2     ≤  18 



Wyndor Glass Example

0, 6
2, 6

Maximize Z = 3X1 + 5X2
Subject to:

X1 ≤    4

Z =36

Extreme Point Solution
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4,0

4,3

Corners:  
(0,0)  (4,0)  (4.3)
(2,6) and (0,6)

X1 ≤    4
2X2     ≤  12  

3X1 + 2X2     ≤  18 

0,0

Z = 3X1 + 5X2 (objective hyperplane)

Z =5

Z =10



Extreme Point Solution
No interior solutions in LPs
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Bounding Face Solution
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How solve an LP

• Extreme point based approaches 

– Simplex

• Or interior point approaches

– Barrier algorithm
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– Barrier algorithm



Fundamental Theorem of LP and Simplex
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Simplex Method

• The idea of the simplex method is to proceed 
from one basic feasible solution (that is, one 
extreme point) of the constraint set of a problem 
in standard form to another, in such a way as to 
continually decrease the value of the objective 
function until a minimum is reached. 
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function until a minimum is reached. 

• The Fundamental Theorem of LP assure us that it 
is sufficient to consider 

– only basic feasible solutions in our search for an optimal 
feasible solution. 

• The Simplex method is an efficient method for 
moving among basic solutions to the minimum.



Systems of Equations

MNMNMM

NN

NN

bxaxaxa

bxaxaxa

bxaxaxa

=+++

=+++

=+++

...

...

...

...

2211

22222121

11212111

Standard Form

If the first m 
columns of A are 

linearly 
independent then 
the system can be 

reduced to a 
canonical form 

through multiples 
of equations being 
added/subtracted 
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bAx =

0,,22,11,

0,2,222,211,22

0,1,122,111,11 ...

mnnmmmmmmmm

nnmmmm

nnmmmm

yxyxyxyx

yxyxyxyx

yxyxyxyx

=+++

⋅⋅

⋅⋅

⋅⋅

=+++

=++++

++++

++++

++++

Canonical Form

Matrix Form

added/subtracted 
to one another



Basic vs.non-Basic &Canonical Form

• System of equations in canonical form:

0,2,222,211,22

0,1,122,111,11 ...

nnmmmm

nnmmmm

yxyxyxyx

yxyxyxyx

=+++

=++++

++++

++++
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• Corresponding to this canonical representation of the 
system, the variables x1, x2 , …,  xm are called basic and the 
other variables are nonbasic. The corresponding basic 
solution is then:

• X1 = y10, x2 = y20,     xm = ym0 xm+1 = 0, …,     xn = 0

• or in vector form: x = (y0, 0) where y0 is m-n-dimensional 
and 0 is the n−m-dimensional zero vector.

0,,22,11, mnnmmmmmmmm yxyxyxyx =+++ ++++



Pivoting and Canonical Form

• Or in terms of the corresponding array of coefficients (or 
tableau):

0,2,22,21,2

0,1,12,11,1

....0      0

....1      0

.......0      1

nmm

nmm

yyyy

yyyy

=+++

=++++

++

++
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• Use pivoting as a means to change the basis of this system 
(in canonical form) 

– what is the new canonical form corresponding to the new set of basic 
variables? 

0,,2,1,1....0      0 mnmmmmm yyyy =+++ ++



Pivoting: entering and leaving

• Suppose we have a system of equations in canonical form where we 
wish to replace the basic variable xp, 1≤ p ≤m by the non-basic variable 
xq, m+1≤ q ≤n 

0,2,22,21,2

0,1,12,11,1

....0      0

....1      0

.......0      1

nmm

nmm

yyyy

yyyy

=+++

=++++

++

++

Let q=n

Let p=2
pivot
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• Can only happen if ypq is non-zero (y2,n in our case); 

• it is accomplished by:
– dividing row p by ypq to get a unit coefficient for xq in the pth equation, 

– and then subtracting suitable multiples of row p from each of the other rows in order to get 
a zero coefficient for xq in all other equations. 

• This transforms 
– the qth column of the tableau so that it is zero except in its pth entry (which is unity) 

– and does not affect the columns of the other basic variables.

0,,2,1,1....0      0 mnmmmmm yyyy =+++ ++
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Geometric Algebraic

• Choose (0,0) as initial CPF 
solution.

• Optimality test:  not 
optimal because moving 
along either edge 
increases Z.

• Iteration 1, step 1:  Move 
up the edge lying on the 
X2 axis.

• Choose X1and X2 to be 
non-basic for initial BFS 
(0,0,4,12,18)

• Not optimal because 
increasing either non-
basic variable increases Z.

• Iteration 1, step 1:  
Increase X2 while 
adjusting other variable 
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X2 axis. adjusting other variable 
values to satisfy the 
system of equations.

0, 6

4,0

4,3

2, 6

0,0

Z = 3X1 + 5X2

Z =5

Z =10

Z =36

Maximize Z = 3X1 + 5X2 + 0X3 + 0X4 + 0X5
Subject to:

X1 + X3   =   4
2X2         +X4  =  12  

3X1 + 2X2     +X5 =  18 



Geometric Algebraic

• Choose (0,0) as initial CPF 
solution.

• Optimality test:  not 
optimal because moving 
along either edge 
increases Z.

• Iteration 1, step 1:  Move 
up the edge lying on the 
X2 axis.

• Choose X1and X2 to be 
non-basic for initial BFS 
(0,0,4,12,18)

• Not optimal because 
increasing either non-
basic variable increases Z.

• Iteration 1, step 1:  
Increase X2 while 
adjusting other variable 

G
ra

d
ie

n
t
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X2 axis. adjusting other variable 
values to satisfy the 
system of equations.

0, 6

4,0

4,3

2, 6

0,0

Z = 3X1 + 5X2

Z =5

Z =10

Z =36

Maximize Z
Subject to:

Z - 3X1 - 5X2 - 0X3 - 0X4 - 0X5        =   0
X1 + X3   =   4

2X2    + X4   =  12  
3X1 + 2X2     + X5 =  18

And Xj ≥ 0  for j=1, …, 5 

2X2 = 12

Z = 3X1 + 5X2

G
ra

d
ie

n
t

X3
X4
x5



Simplex Method
• The Simplex method is a matrix procedure for solving linear programs in 

standard form:

optimize CTx

subject to Ax=b with x ≥ 0 and b ≥ 0 

where a basic feasible solution x0 is known.  

• The Simplex method is a method that proceeds from one BFS or extreme 
point of the feasible region of an LP problem expressed in tableau form to 
another neighboring BFS, in such a way as to continually increase (or 
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another neighboring BFS, in such a way as to continually increase (or 
decrease) the value of the objective function until optimality is reached. 

• For maximization programs, the simplex utilizes a tableau in which Co

designates the cost vector associated with the variables X0:X0 is the basis

Minimize xT

cT

x0 , c0 A b

CT – C0
TA -– C0

Tb

Maximize xT

cT

x0 , c0 A b

C0
Tb –CT C0

Tb



Duality

• Provides an alternative/dual LP (introduced in 1940s)

• Dual algorithms

• When both LP problems have feasible vectors, they 
have optimal x* and y*. The minimum cost cx* equals 
the maximum income y*b. If yb =cx then x and y are 
optimal.  [Duality Theorem]
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optimal.  [Duality Theorem]

• If x and y are feasible in the primal and dual problems 
then yb ≤cx [weak duality]. 

• Provides a means to conduct sensitivity analysis 
easily

– Resource amounts can be estimates; so maybe want to engage in 
a what-if analysis 



Duality
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LP Outline

• Introduction and some motivating advertising problems

• Linear Algebra Basics Review

• Fundamental theorem of LP

• Matrix-view and the fundamental insight

• Duality
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• Duality

• Interior point Algorithm

• Transportation Problem

• Applying linear programming to online advertising

• Summary



Interior Point Solution

• Starts from inside the feasible region

• Moves along a path from the interior to the 
boundary

• Large problems can be solved more efficiently
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LP:  Algorithms

•Simplex. (Dantzig 1947) 

– Developed shortly after WWII in response to logistical problems:
used for 1948 Berlin airlift.

– Practical solution method  that moves from one extreme point to a
neighboring extreme point.

– Finite (exponential) complexity, but no polynomial implementation
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– Finite (exponential) complexity, but no polynomial implementation
known.



LP:  Polynomial Algorithms

•Ellipsoid.  (Khachian 1979, 1980) 

– Solvable in polynomial time:  O(n4 L) bit operations.

• n = # variables 

• L = # bits in input

– Theoretical tour de force.

– Not remotely practical.

•Karmarkar's algorithm.  (Karmarkar 1984)
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•Karmarkar's algorithm.  (Karmarkar 1984)

– O(n3.5 L).

– Polynomial and reasonably efficient
implementations possible.

•Interior point algorithms. 

– O(n3 L).

– Competitive with simplex!

• will likely dominate on large problems soon

– Extends to even more general problems. 



LP Outline

• Introduction and some motivating advertising problems

• Linear Algebra Basics Review

• Fundamental theorem of LP

• Matrix-view and the fundamental insight

• Duality
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• Duality

• Interior point Algorithm

• Transportation Problem

• Applying linear programming to online advertising

• Summary



Transportation Problem Description

A transportation problem basically deals 
with the problem, which aims to find the 
best way to fulfill the demand of n demand 
points using the capacities of m supply 
points. While trying to find the best way, 
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points. While trying to find the best way, 
generally a variable cost of shipping the 
product from one supply point to a 
demand point or a similar constraint 
should be taken into consideration.



Linear Programming Summary

Linear programs are problems that can be 
expressed in canonical form:

Maximize  XXXX

Subject to  f(x)….
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LP Algorithms Summary

• Many algorithms can be used to solve the LP

• Simplex algorithm (most popular) 
– Searches for an optimal solution by moving from one basic 

solution to another, along the edges of the feasible polygon, 
in direction of cost decrease (Graphically, moves from corner 
to corner) 
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to corner) 

• Interior Point Methods (more recent)
– Approaches the situation through the interior of the convex 

polygon 

– Affine Scaling 

– Log Barrier Methods 

– Primal-dual methods 

• Bounded regions and corner points



Scheduling Web Adveristisments

• Predictive Clustering + Linear Programming = 
Web Adverstisment Scheduler

– Partition the world of “webpages X users X Ads” as it is 
sparse

– Schedule which ads get displayed 

RuSSIR 2009, Petrozavodsk, Russia.  Online Advertising ©  2009 James G. Shanahan (San Francisco)
James.Shanahan_AT_gmail_DOT_com

255

• Limited context to show ads 

• Many advertisers want their ads shown and are 
willing to pay

• Maximize profit (or some proxy for profit) given 
limited realestate (contexts) and many ads.



Sample Problem
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http://www.research.ibm.com/people/n/nabe/JECR05-NA.pdf



Greedy vs Random Vs LP
• Assume that page views for all combinations of attribute values 

occur randomly.

• The greedy strategy always selects ad 1 for the first 10,000

• page views, ad 2 for the second 10,000 page views and ad 3 for 
the last 10,000 page views, because (the click-through rate of ad 
1) > (the click-through rate of ad 2) > (the click-through rate of 
ad 3) holds for all combinations of attribute values. 

– As a result, we find that the actual click-through rates for ad 1, ad 2 and ad 3 are 
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– As a result, we find that the actual click-through rates for ad 1, ad 2 and ad 3 are 
2.2%, 1.76 . . .% and 1.33 . . .%, 

– the total click-through rate for all ads is 1.76%, which is the same rate as what 
would be obtained by the random selection strategy.

• According to the optimal display schedule in the LP model, 
click-through rate is 2.1%

CTR Ad2

proportion of 

impressions sumproduct(CTRAd2*proportion2)

1.1 0.333333 1.766667

2.1 0.333333

2.1 0.166667

2.1 0.166667

CTR Ad1 CTR Ad2 CTR Ad3 AvgAdCtr

proportion of 

impressions

sumproduct

(CTRAd*pro

portion)

2.2 1.1 1 1.433333 0.333333 1.766667

2.2 2.1 1 1.766667 0.333333

2.2 2.1 2 2.1 0.166667

2.2 2.1 2 2.1 0.166667



Transportation Problem Description

A transportation problem basically deals 
with the problem, which aims to find the 
best way to fulfill the demand of n demand 
points using the capacities of m supply 
points. 

RuSSIR 2009, Petrozavodsk, Russia.  Online Advertising ©  2009 James G. Shanahan (San Francisco)
James.Shanahan_AT_gmail_DOT_com

258

points. 

While trying to find the best way, generally 
a variable cost of shipping the product 
from one supply point to a demand point 
or a similar constraint should be taken into 
consideration.



Maximize Revenue: Ad Allocation Example

From To

Ad1 Ad2 ..Adj….. Adm Supply 

PageViews

PubZone 1 CTRij CTRij CTRij CTRij 35

PubZone 2 … … … … 50
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PubZone 2 … … … … 50

PubZone3 CTR3j CTR3j CTR3j CTR3j 15

Demand 

Contracted 

PageViews

45 20 30 5

Given this Transportation Tableau generate the ad 
display schedule   (explore R’s lp_solve)



Maximize Revenue: Ad Allocation Example

From To

Ad1 Ad2 ..Adj….. Adm Supply 

PageViews

PubZone 1 dij dij dij dij 35

PubZone 2 … … … … 50
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PubZone 2 … … … … 50

PubZone3 dij dij dij dij 15

Demand 

Contracted 

PageViews

45 20 30 5

Use LP to generate the Ad display schedule to 
maximize my revenue (or rev proxy, .i.e., CTR)



LP Formulation of Powerco’s Problem

Min Z = 8X11+  6X12+10X13+9X14    +

9X21+12X22+13X23+7X24 +

14X31+ 9X32+16X33+5X34

S.T.: X11+X12+X13+X14 <= 35 (Supply Constraints)

X +X +X +X <= 50
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X21+X22+X23+X24 <= 50

X31+X32+X33+X34 <= 40

X11+X21+X31 >= 45 (Demand Constraints)

X12+X22+X32 >= 20

X13+X23+X33 >= 30

X14+X24+X34 >= 30

Xij >= 0 (i= 1,2,3; j= 1,2,3,4)



Xij = number of units shipped from supply 
point i to demand point j

),...,2,1(..

min
1 1

misXts

Xc

nj

iij
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i

nj

j

ijij

=≤∑

∑∑
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=
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Optimal LP Strategy for Example

• In the above case, according to the optimal 
display schedule in the LP model, ad 1 is always 
selected for (afternoon, sports), ad 2 for 
(afternoon, not sports) and ad 3, otherwise.

• The total click-through rate of this optimal 
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• The total click-through rate of this optimal 
schedule is 2.1% 

– and the actual click-through rates for ad 1, ad 2 and ad 3 are 
2.2%, 2.1% and 2.0%, respectively.

• Both greedy and random selection strategy have 
a CTR of 1.76%, 



Partition using a predictive clustering

RuSSIR 2009, Petrozavodsk, Russia.  Online Advertising ©  2009 James G. Shanahan (San Francisco)
James.Shanahan_AT_gmail_DOT_com

264

Partition “webpages X users X Ads” into zones of self-similarity 
(using page, user, Ad and CTR-based variables) Vs (page, user, Ad )

[Chickering et al. 2001]



Maximize Revenue: Ad Allocation Example

From To

Ad1 Ad2 ..Adj….. Adm Supply 

PageViews

PubZone 1 dij dij dij dij 35

PubZone 2 … … … … 50
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PubZone 2 … … … … 50

PubZone3 dij dij dij dij 15

Demand 

Contracted 

PageViews

45 20 30 5

Use LP to generate the Ad display schedule to 
maximize my revenue (or rev proxy, .i.e., CTR)



Results at msnbc.com

• 1.5 Million impress/Day, Dec 1998
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[Chickering et al. 2001]
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[Nakamura and Abe]

Greedy heuristic to search the best P; 
then get the click-through rate



Results for Nakamura, Abe

• Simulation Results

– 32 Ads, 128 serving contexts (reduced to 32 clusters)
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Modified Interior Point Alg.



Adapting LP for “important” Advertisers
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Forward Markets
• Linear Programming

• Quadratic Programming

• Allocation of Ads to Publisher real estate

– Give ads play in network

• Optimize revenue subject to ….

• Inventory Management

– Contract as many impressions as possible but don’t oversell 
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– Contract as many impressions as possible but don’t oversell 

• Media Buyer (Arbitrage) 

– Frame as a non-linear programming (NLP) problem

– Talks to publisher

– Determine publisher mix for network

• Optimize publisher mix subject to constraints



Problem 2: Ad allocation problem

• Ad agencies wish to contract as many ad 
impressions as possible to earn more 
revenue.

• But overselling is dangerous. So they need 
to grasp how many sellable impressions 
remain.

• In case 1, 8000 sellable impression remain 
for afternoon constraint, since at least 2000 
views in (afternoon, sports) are needed for 
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views in (afternoon, sports) are needed for 
the contract of sports constraint.

• The calculation of the remaining sellable 
impressions for a certain constraint t should 
consider contracts for other constraints 
which overlap constraint t. 

• t (how many impressions remain the target 
afternoon (as opposed to afternoon only))

How many page views can I sell for a publisher zone?



Ad allocation problem

Should only overlapping constraints be considered?

• Case 2 says NO!

• The sellable impressions for 
business constraint is 8000, not
10000. The sports-constraint 
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10000. The sports-constraint 
contract indirectly affects it, 
though they don’t overlap.

• t is the business constraint (8000 
possible pageviews)



LP: Intermediate Conclusions

• Linear Programming and Machine learning work 
hand in hand to serve ads 

– E.g., Advertising.com, Microsoft

• Constraint optimization is critical in ad serving 
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• Constraint optimization is critical in ad serving 
(especially in forward markets)


